These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 16443658)

  • 1. Salting the charged surface: pH and salt dependence of protein G B1 stability.
    Lindman S; Xue WF; Szczepankiewicz O; Bauer MC; Nilsson H; Linse S
    Biophys J; 2006 Apr; 90(8):2911-21. PubMed ID: 16443658
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrostatic contributions to the stability of halophilic proteins.
    Elcock AH; McCammon JA
    J Mol Biol; 1998 Jul; 280(4):731-48. PubMed ID: 9677300
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stabilization of the cold shock protein CspB from Bacillus subtilis by evolutionary optimization of Coulombic interactions.
    Wunderlich M; Martin A; Schmid FX
    J Mol Biol; 2005 Apr; 347(5):1063-76. PubMed ID: 15784264
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of salt on the urea-unfolded form of barstar probed by m value measurements.
    Pradeep L; Udgaonkar JB
    Biochemistry; 2004 Sep; 43(36):11393-402. PubMed ID: 15350126
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of pH, salt, and macromolecular crowding on the stability of FK506-binding protein: an integrated experimental and theoretical study.
    Spencer DS; Xu K; Logan TM; Zhou HX
    J Mol Biol; 2005 Aug; 351(1):219-32. PubMed ID: 15992823
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Salt effects on hydrophobic interaction and charge screening in the folding of a negatively charged peptide to a coiled coil (leucine zipper).
    Jelesarov I; Dürr E; Thomas RM; Bosshard HR
    Biochemistry; 1998 May; 37(20):7539-50. PubMed ID: 9585569
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Putative interhelix ion pairs involved in the stability of myoglobin.
    Ramos CH; Kay MS; Baldwin RL
    Biochemistry; 1999 Jul; 38(30):9783-90. PubMed ID: 10423259
    [TBL] [Abstract][Full Text] [Related]  

  • 8. pKa values and the pH dependent stability of the N-terminal domain of L9 as probes of electrostatic interactions in the denatured state. Differentiation between local and nonlocal interactions.
    Kuhlman B; Luisi DL; Young P; Raleigh DP
    Biochemistry; 1999 Apr; 38(15):4896-903. PubMed ID: 10200179
    [TBL] [Abstract][Full Text] [Related]  

  • 9. pK(a) values for side-chain carboxyl groups of a PGB1 variant explain salt and pH-dependent stability.
    Lindman S; Linse S; Mulder FA; André I
    Biophys J; 2007 Jan; 92(1):257-66. PubMed ID: 17040982
    [TBL] [Abstract][Full Text] [Related]  

  • 10. pH-dependent interactions and the stability and folding kinetics of the N-terminal domain of L9. Electrostatic interactions are only weakly formed in the transition state for folding.
    Luisi DL; Raleigh DP
    J Mol Biol; 2000 Jun; 299(4):1091-100. PubMed ID: 10843860
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of electrostatic interactions in the denatured state ensemble of the N-terminal domain of L9 under native conditions.
    Meng W; Raleigh DP
    Proteins; 2011 Dec; 79(12):3500-10. PubMed ID: 21915914
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conformational studies of anionic melittin analogues: effect of peptide concentration, pH, ionic strength, and temperature--models for protein folding and halophilic proteins.
    Ramalingam K; Aimoto S; Bello J
    Biopolymers; 1992 Aug; 32(8):981-92. PubMed ID: 1420981
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Salt-induced stabilization of apoflavodoxin at neutral pH is mediated through cation-specific effects.
    Maldonado S; Irún MP; Campos LA; Rubio JA; Luquita A; Lostao A; Wang R; García-Moreno E B; Sancho J
    Protein Sci; 2002 May; 11(5):1260-73. PubMed ID: 11967382
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrostatic stabilization of a thermophilic cold shock protein.
    Perl D; Schmid FX
    J Mol Biol; 2001 Oct; 313(2):343-57. PubMed ID: 11800561
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermal stability and atomic-resolution crystal structure of the Bacillus caldolyticus cold shock protein.
    Mueller U; Perl D; Schmid FX; Heinemann U
    J Mol Biol; 2000 Apr; 297(4):975-88. PubMed ID: 10736231
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inverse electrostatic effect: electrostatic repulsion in the unfolded state stabilizes a leucine zipper.
    Marti DN; Bosshard HR
    Biochemistry; 2004 Oct; 43(39):12436-47. PubMed ID: 15449933
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contributions of engineered surface salt bridges to the stability of T4 lysozyme determined by directed mutagenesis.
    Sun DP; Sauer U; Nicholson H; Matthews BW
    Biochemistry; 1991 Jul; 30(29):7142-53. PubMed ID: 1854726
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermal versus guanidine-induced unfolding of ubiquitin. An analysis in terms of the contributions from charge-charge interactions to protein stability.
    Ibarra-Molero B; Loladze VV; Makhatadze GI; Sanchez-Ruiz JM
    Biochemistry; 1999 Jun; 38(25):8138-49. PubMed ID: 10387059
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Close-range electrostatic interactions in proteins.
    Kumar S; Nussinov R
    Chembiochem; 2002 Jul; 3(7):604-17. PubMed ID: 12324994
    [TBL] [Abstract][Full Text] [Related]  

  • 20. pH-dependent stability and folding kinetics of a protein with an unusual alpha-beta topology: the C-terminal domain of the ribosomal protein L9.
    Sato S; Raleigh DP
    J Mol Biol; 2002 Apr; 318(2):571-82. PubMed ID: 12051860
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.