BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 16443698)

  • 1. A role for mitochondria in the establishment and maintenance of the maize root quiescent center.
    Jiang K; Ballinger T; Li D; Zhang S; Feldman L
    Plant Physiol; 2006 Mar; 140(3):1118-25. PubMed ID: 16443698
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quiescent center formation in maize roots is associated with an auxin-regulated oxidizing environment.
    Jiang K; Meng YL; Feldman LJ
    Development; 2003 Apr; 130(7):1429-38. PubMed ID: 12588857
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The maize root stem cell niche: a partnership between two sister cell populations.
    Jiang K; Zhu T; Diao Z; Huang H; Feldman LJ
    Planta; 2010 Jan; 231(2):411-24. PubMed ID: 20041334
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Small kernel 1 encodes a pentatricopeptide repeat protein required for mitochondrial nad7 transcript editing and seed development in maize (Zea mays) and rice (Oryza sativa).
    Li XJ; Zhang YF; Hou M; Sun F; Shen Y; Xiu ZH; Wang X; Chen ZL; Sun SS; Small I; Tan BC
    Plant J; 2014 Sep; 79(5):797-809. PubMed ID: 24923534
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of root apical meristem development.
    Jiang K; Feldman LJ
    Annu Rev Cell Dev Biol; 2005; 21():485-509. PubMed ID: 16212504
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The inhibition of maize (Zea mays L.) root stem cell regeneration by low oxygen is attenuated by Phytoglobin 1 (Pgb1) through changes in auxin and jasmonic acid.
    Rathnayaka Pathiranage RGL; Mira MM; Hill RD; Stasolla C
    Planta; 2023 May; 257(6):120. PubMed ID: 37178357
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Auxin metabolism in the root apical meristem.
    Kerk NM; Jiang K; Feldman LJ
    Plant Physiol; 2000 Mar; 122(3):925-32. PubMed ID: 10712557
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [The role of ethylene in activation division cell quiescent center in the cut maize roots].
    Bystrova EI; Zhukovskaya NV; Rakitin VJ; Ivanov VB
    Ontogenez; 2015; 46(2):82-6. PubMed ID: 26021120
    [TBL] [Abstract][Full Text] [Related]  

  • 9. EMP18 functions in mitochondrial atp6 and cox2 transcript editing and is essential to seed development in maize.
    Li XL; Huang WL; Yang HH; Jiang RC; Sun F; Wang HC; Zhao J; Xu CH; Tan BC
    New Phytol; 2019 Jan; 221(2):896-907. PubMed ID: 30168136
    [TBL] [Abstract][Full Text] [Related]  

  • 10. What remains of the Cholodny-Went theory? IAA in growing and gravireacting maize roots.
    Pilet PE
    Plant Cell Environ; 1992 Sep; 15(7):779-80. PubMed ID: 11541810
    [No Abstract]   [Full Text] [Related]  

  • 11. [Activation of cell division in the quiescent center of excised maize root tip].
    Ivanov VB; Bystrova EI; Mesenko MM; Kotova LM; Kotov AA
    Ontogenez; 2011; 42(5):357-62. PubMed ID: 22145304
    [TBL] [Abstract][Full Text] [Related]  

  • 12. OsIAA23-mediated auxin signaling defines postembryonic maintenance of QC in rice.
    Jun N; Gaohang W; Zhenxing Z; Huanhuan Z; Yunrong W; Ping W
    Plant J; 2011 Nov; 68(3):433-42. PubMed ID: 21736653
    [TBL] [Abstract][Full Text] [Related]  

  • 13. At the root of quiescence: function and regulation of the quiescent center.
    Strotmann VI; Stahl Y
    J Exp Bot; 2021 Oct; 72(19):6716-6726. PubMed ID: 34111273
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxidative stress and formation and maintenance of root stem cells.
    Ivanov VB
    Biochemistry (Mosc); 2007 Oct; 72(10):1110-4. PubMed ID: 18021068
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of a weak DC electric field on root meristem architecture.
    Wawrecki W; Zagórska-Marek B
    Ann Bot; 2007 Oct; 100(4):791-6. PubMed ID: 17686761
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A metabolic study of the regulation of proteolysis by sugars in maize root tips: effects of glycerol and dihydroxyacetone.
    Brouquisse R; Rolin D; Cortès S; Gaudillère M; Evrard A; Roby C
    Planta; 2007 Feb; 225(3):693-709. PubMed ID: 16944197
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ZmPIN1a and ZmPIN1b encode two novel putative candidates for polar auxin transport and plant architecture determination of maize.
    Carraro N; Forestan C; Canova S; Traas J; Varotto S
    Plant Physiol; 2006 Sep; 142(1):254-64. PubMed ID: 16844839
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Empty pericarp7 encodes a mitochondrial E-subgroup pentatricopeptide repeat protein that is required for ccmFN editing, mitochondrial function and seed development in maize.
    Sun F; Wang X; Bonnard G; Shen Y; Xiu Z; Li X; Gao D; Zhang Z; Tan BC
    Plant J; 2015 Oct; 84(2):283-95. PubMed ID: 26303363
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extracellular ATP inhibits root gravitropism at concentrations that inhibit polar auxin transport.
    Tang W; Brady SR; Sun Y; Muday GK; Roux SJ
    Plant Physiol; 2003 Jan; 131(1):147-54. PubMed ID: 12529523
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional specialization of maize mitochondrial aldehyde dehydrogenases.
    Liu F; Schnable PS
    Plant Physiol; 2002 Dec; 130(4):1657-74. PubMed ID: 12481049
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.