These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 16445250)

  • 1. Computer-aided kidney segmentation on abdominal CT images.
    Lin DT; Lei CC; Hung SW
    IEEE Trans Inf Technol Biomed; 2006 Jan; 10(1):59-65. PubMed ID: 16445250
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Construction of hierarchical multi-organ statistical atlases and their application to multi-organ segmentation from CT images.
    Okada T; Yokota K; Hori M; Nakamoto M; Nakamura H; Sato Y
    Med Image Comput Comput Assist Interv; 2008; 11(Pt 1):502-9. PubMed ID: 18979784
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Abdominal multi-organ CT segmentation using organ correlation graph and prediction-based shape and location priors.
    Okada T; Linguraru MG; Hori M; Summers RM; Tomiyama N; Sato Y
    Med Image Comput Comput Assist Interv; 2013; 16(Pt 3):275-82. PubMed ID: 24505771
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automatic segmentation of the liver from multi- and single-phase contrast-enhanced CT images.
    Ruskó L; Bekes G; Fidrich M
    Med Image Anal; 2009 Dec; 13(6):871-82. PubMed ID: 19692288
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Atlas-driven lung lobe segmentation in volumetric X-ray CT images.
    Zhang L; Hoffman EA; Reinhardt JM
    IEEE Trans Med Imaging; 2006 Jan; 25(1):1-16. PubMed ID: 16398410
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Medical image analysis of 3D CT images based on extension of Haralick texture features.
    Tesar L; Shimizu A; Smutek D; Kobatake H; Nawano S
    Comput Med Imaging Graph; 2008 Sep; 32(6):513-20. PubMed ID: 18614335
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automated segmentation of the liver from 3D CT images using probabilistic atlas and multi-level statistical shape model.
    Okada T; Shimada R; Sato Y; Hori M; Yokota K; Nakamoto M; Chen YW; Nakamura H; Tamura S
    Med Image Comput Comput Assist Interv; 2007; 10(Pt 1):86-93. PubMed ID: 18051047
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fast and robust clinical triple-region image segmentation using one level set function.
    Li S; Fevens T; Krzyzak A; Jin C; Li S
    Med Image Comput Comput Assist Interv; 2006; 9(Pt 2):766-73. PubMed ID: 17354842
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automated segmentation and quantification of liver and spleen from CT images using normalized probabilistic atlases and enhancement estimation.
    Linguraru MG; Sandberg JK; Li Z; Shah F; Summers RM
    Med Phys; 2010 Feb; 37(2):771-83. PubMed ID: 20229887
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Image segmentation errors correction by mesh segmentation and deformation.
    Kronman A; Joskowicz L
    Med Image Comput Comput Assist Interv; 2013; 16(Pt 2):206-13. PubMed ID: 24579142
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A segmentation framework for abdominal organs from CT scans.
    Campadelli P; Casiraghi E; Pratissoli S
    Artif Intell Med; 2010 Sep; 50(1):3-11. PubMed ID: 20542673
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Validation of bone segmentation and improved 3-D registration using contour coherency in CT data.
    Wang LI; Greenspan M; Ellis R
    IEEE Trans Med Imaging; 2006 Mar; 25(3):324-34. PubMed ID: 16524088
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Segmentation of liver and spleen based on computational anatomy models.
    Dong C; Chen YW; Foruzan AH; Lin L; Han XH; Tateyama T; Wu X; Xu G; Jiang H
    Comput Biol Med; 2015 Dec; 67():146-60. PubMed ID: 26551453
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automatic segmentation of bladder and prostate using coupled 3D deformable models.
    Costa MJ; Delingette H; Novellas S; Ayache N
    Med Image Comput Comput Assist Interv; 2007; 10(Pt 1):252-60. PubMed ID: 18051066
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spine segmentation using articulated shape models.
    Klinder T; Wolz R; Lorenz C; Franz A; Ostermann J
    Med Image Comput Comput Assist Interv; 2008; 11(Pt 1):227-34. PubMed ID: 18979752
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automatic model-guided segmentation of the human brain ventricular system from CT images.
    Liu J; Huang S; Ihar V; Ambrosius W; Lee LC; Nowinski WL
    Acad Radiol; 2010 Jun; 17(6):718-26. PubMed ID: 20457415
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Robust registration of longitudinal spine CT.
    Glocker B; Zikic D; Haynor DR
    Med Image Comput Comput Assist Interv; 2014; 17(Pt 1):251-8. PubMed ID: 25333125
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hierarchical segmentation and identification of thoracic vertebra using learning-based edge detection and coarse-to-fine deformable model.
    Ma J; Lu L; Zhan Y; Zhou X; Salganicoff M; Krishnan A
    Med Image Comput Comput Assist Interv; 2010; 13(Pt 1):19-27. PubMed ID: 20879210
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Segmentation of thin structures in volumetric medical images.
    Holtzman-Gazit M; Kimmel R; Peled N; Goldsher D
    IEEE Trans Image Process; 2006 Feb; 15(2):354-63. PubMed ID: 16479805
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Semiautomated four-dimensional computed tomography segmentation using deformable models.
    Ragan D; Starkschall G; McNutt T; Kaus M; Guerrero T; Stevens CW
    Med Phys; 2005 Jul; 32(7):2254-61. PubMed ID: 16121580
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.