These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 1644568)

  • 61. USE OF A SIMPLE THERMALISED NEUTRON FIELD FOR QUALITY ACCEPTANCE OF WHOLE BODY TLDS.
    Gilvin PJ; Baker ST; Eakins JS; Tanner RJ
    Radiat Prot Dosimetry; 2016 Sep; 170(1-4):108-12. PubMed ID: 26801052
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Personal neutron dosimetry in nuclear power plants using etched track and albedo thermoluminescence dosemeters.
    Fernández F; Bakali M; Amgarou K; Nourreddine A; Mouhssine D
    Radiat Prot Dosimetry; 2004; 110(1-4):701-4. PubMed ID: 15353734
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Study of the glow curves of TLD exposed to thermal neutrons.
    Triolo A; Brai M; Marrale M; Gennaro G; Bartolotta A
    Radiat Prot Dosimetry; 2007; 126(1-4):333-6. PubMed ID: 17502321
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Response of an area albedo neutron dosimeter.
    Gupta VP
    Health Phys; 1983 Jul; 45(1):158-62. PubMed ID: 6874345
    [No Abstract]   [Full Text] [Related]  

  • 65. Current challenges in personal dosimetry at the US DOE Hanford site.
    Rathbone BA; McDonald JC; Traub RJ
    Radiat Prot Dosimetry; 2002; 101(1-4):153-66. PubMed ID: 12382727
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Estimation of shallow-dose equivalent using a two-element dosimeter.
    Gupta VP
    Health Phys; 1983 Apr; 44(4):373-8. PubMed ID: 6841094
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Response of the Panasonic UD803AS TLD in workplace neutron fields.
    Jones LA; Stokes RP; Pinks T
    J Radiol Prot; 2008 Mar; 28(1):73-82. PubMed ID: 18309196
    [TBL] [Abstract][Full Text] [Related]  

  • 68. MEASUREMENT OF THE CONTRALATERAL BREAST PHOTON AND THERMAL NEUTRON DOSES IN BREAST CANCER RADIOTHERAPY: A COMPARISON BETWEEN PHYSICAL AND DYNAMIC WEDGES.
    Bagheri H; Rabie Mahdavi S; Shekarchi B; Manouchehri F; Farhood B
    Radiat Prot Dosimetry; 2018 Jan; 178(1):73-81. PubMed ID: 28591863
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Thermoluminescence responses of photon- and electron-irradiated lithium potassium borate co-doped with Cu+Mg or Ti+Mg.
    Alajerami YS; Hashim S; Ramli AT; Saleh MA; Saripan MI; Alzimami K; Min Ung N
    Appl Radiat Isot; 2013 Aug; 78():21-5. PubMed ID: 23644162
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Neutron spectral measurements in an intense photon field associated with a high-energy x-ray radiotherapy machine.
    Holeman GR; Price KW; Friedman LF; Nath R
    Med Phys; 1977; 4(6):508-15. PubMed ID: 412048
    [TBL] [Abstract][Full Text] [Related]  

  • 71. On fading corrections for LiF:Mg,Ti irradiated by thermal neutrons.
    German U; Weinstein M; Dubinski A; Vainblat N; Alfassi ZB
    Radiat Prot Dosimetry; 2004; 110(1-4):305-8. PubMed ID: 15353664
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Practical considerations for TLD-400/700-based gamma ray dosimetry for BNCT applications in a high thermal neutron fluence.
    Martsolf SW; Johnson JE; Vostmyer CE; Albertson BD; Binney SE
    Health Phys; 1995 Dec; 69(6):966-70. PubMed ID: 7493815
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Experimental determination of the photon-energy dependent dose-to-water response of TLD600 and TLD700 (LiF:Mg,Ti) thermoluminescence detectors.
    Schwahofer A; Feist H; Georg H; Häring P; Schlegel W
    Z Med Phys; 2017 Mar; 27(1):13-20. PubMed ID: 26972816
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Characterization of the secondary neutron field produced during treatment of an anthropomorphic phantom with x-rays, protons and carbon ions.
    Tessa CL; Berger T; Kaderka R; Schardt D; Burmeister S; Labrenz J; Reitz G; Durante M
    Phys Med Biol; 2014 Apr; 59(8):2111-25. PubMed ID: 24694920
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Compounds of 6Li and natural Li for EPR dosimetry in photon/neutron mixed radiation fields.
    Lund E; Gustafsson H; Danilczuk M; Sastry MD; Lund A
    Spectrochim Acta A Mol Biomol Spectrosc; 2004 May; 60(6):1319-26. PubMed ID: 15134730
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Thermoluminescent dosemeters based on TLD-500 detectors for control of neutron fields.
    Nikiforov SV; Kortov VS; Milman II
    Radiat Prot Dosimetry; 2002; 101(1-4):125-8. PubMed ID: 12382720
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Study of a method based on TLD detectors for in-phantom dosimetry in BNCT.
    Gambarini G; Klamert V; Agosteo S; Birattari C; Gay S; Rosi G; Scolari L
    Radiat Prot Dosimetry; 2004; 110(1-4):631-6. PubMed ID: 15353721
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Dosimetry of heavy charged particles with thermoluminescence detectors--models and applications.
    Olko P; Bilski P; Budzanowski M; Molokanov A
    Radiat Prot Dosimetry; 2004; 110(1-4):315-8. PubMed ID: 15353666
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Evaluation of uncertainty in personal dose measured using CaSO4:Dy-based TLD badge at different workplaces.
    Pradhan SM; Pathan MS; Chakrabarty S; Selvam TP; Sapra BK
    Radiat Prot Dosimetry; 2024 Jun; 200(10):890-900. PubMed ID: 38847419
    [TBL] [Abstract][Full Text] [Related]  

  • 80. MCNP SIMULATION OF THE HP(10) ENERGY RESPONSE OF A BRAZILIAN TLD ALBEDO NEUTRON INDIVIDUAL DOSEMETER, FROM THERMAL TO 20 MeV.
    Freitas BM; Martins MM; Pereira WW; da Silva AX; Mauricio CL
    Radiat Prot Dosimetry; 2016 Sep; 170(1-4):350-3. PubMed ID: 26276807
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.