These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

360 related articles for article (PubMed ID: 16445761)

  • 1. Novel architecture of family-9 glycoside hydrolases identified in cellulosomal enzymes of Acetivibrio cellulolyticus and Clostridium thermocellum.
    Jindou S; Xu Q; Kenig R; Shulman M; Shoham Y; Bayer EA; Lamed R
    FEMS Microbiol Lett; 2006 Jan; 254(2):308-16. PubMed ID: 16445761
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physical association of the catalytic and helper modules of a family-9 glycoside hydrolase is essential for activity.
    Burstein T; Shulman M; Jindou S; Petkun S; Frolow F; Shoham Y; Bayer EA; Lamed R
    FEBS Lett; 2009 Mar; 583(5):879-84. PubMed ID: 19302786
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interactions between immunoglobulin-like and catalytic modules in Clostridium thermocellum cellulosomal cellobiohydrolase CbhA.
    Kataeva IA; Uversky VN; Brewer JM; Schubot F; Rose JP; Wang BC; Ljungdahl LG
    Protein Eng Des Sel; 2004 Nov; 17(11):759-69. PubMed ID: 15596428
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure of a family 3b' carbohydrate-binding module from the Cel9V glycoside hydrolase from Clostridium thermocellum: structural diversity and implications for carbohydrate binding.
    Petkun S; Jindou S; Shimon LJ; Rosenheck S; Bayer EA; Lamed R; Frolow F
    Acta Crystallogr D Biol Crystallogr; 2010 Jan; 66(Pt 1):33-43. PubMed ID: 20057047
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-dimensional structure of a putative non-cellulosomal cohesin module from a Clostridium perfringens family 84 glycoside hydrolase.
    Chitayat S; Gregg K; Adams JJ; Ficko-Blean E; Bayer EA; Boraston AB; Smith SP
    J Mol Biol; 2008 Jan; 375(1):20-8. PubMed ID: 17999932
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome-wide analysis of acetivibrio cellulolyticus provides a blueprint of an elaborate cellulosome system.
    Dassa B; Borovok I; Lamed R; Henrissat B; Coutinho P; Hemme CL; Huang Y; Zhou J; Bayer EA
    BMC Genomics; 2012 May; 13():210. PubMed ID: 22646801
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel cellulosomal scaffoldin from Acetivibrio cellulolyticus that contains a family 9 glycosyl hydrolase.
    Ding SY; Bayer EA; Steiner D; Shoham Y; Lamed R
    J Bacteriol; 1999 Nov; 181(21):6720-9. PubMed ID: 10542174
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation and characterization of a new cellulosome-producing Clostridium thermocellum strain.
    Tachaapaikoon C; Kosugi A; Pason P; Waeonukul R; Ratanakhanokchai K; Kyu KL; Arai T; Murata Y; Mori Y
    Biodegradation; 2012 Feb; 23(1):57-68. PubMed ID: 21637976
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interactions between family 3 carbohydrate binding modules (CBMs) and cellulosomal linker peptides.
    Yaniv O; Frolow F; Levy-Assraf M; Lamed R; Bayer EA
    Methods Enzymol; 2012; 510():247-59. PubMed ID: 22608730
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A single mutation reforms the binding activity of an adhesion-deficient family 3 carbohydrate-binding module.
    Yaniv O; Petkun S; Shimon LJ; Bayer EA; Lamed R; Frolow F
    Acta Crystallogr D Biol Crystallogr; 2012 Jul; 68(Pt 7):819-28. PubMed ID: 22751667
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glycoside hydrolases as components of putative carbohydrate biosensor proteins in Clostridium thermocellum.
    Bahari L; Gilad Y; Borovok I; Kahel-Raifer H; Dassa B; Nataf Y; Shoham Y; Lamed R; Bayer EA
    J Ind Microbiol Biotechnol; 2011 Jul; 38(7):825-32. PubMed ID: 20820855
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The functional repertoire of prokaryote cellulosomes includes the serpin superfamily of serine proteinase inhibitors.
    Kang S; Barak Y; Lamed R; Bayer EA; Morrison M
    Mol Microbiol; 2006 Jun; 60(6):1344-54. PubMed ID: 16796673
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The cellulosome system of Acetivibrio cellulolyticus includes a novel type of adaptor protein and a cell surface anchoring protein.
    Xu Q; Gao W; Ding SY; Kenig R; Shoham Y; Bayer EA; Lamed R
    J Bacteriol; 2003 Aug; 185(15):4548-57. PubMed ID: 12867464
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural characterization of type II dockerin module from the cellulosome of Clostridium thermocellum: calcium-induced effects on conformation and target recognition.
    Adams JJ; Webb BA; Spencer HL; Smith SP
    Biochemistry; 2005 Feb; 44(6):2173-82. PubMed ID: 15697243
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unusual binding properties of the dockerin module of Clostridium thermocellum endoglucanase CelJ (Cel9D-Cel44A).
    Sakka K; Kishino Y; Sugihara Y; Jindou S; Sakka M; Inagaki M; Kimura T; Sakka K
    FEMS Microbiol Lett; 2009 Nov; 300(2):249-55. PubMed ID: 19811541
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of carbohydrate binding module (CBM3c) of GH9 β-1,4 endoglucanase (Cel9W) from Hungateiclostridium thermocellum ATCC 27405 in catalysis.
    Kumar K; Singal S; Goyal A
    Carbohydr Res; 2019 Oct; 484():107782. PubMed ID: 31450031
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of all family-9 glycoside hydrolases synthesized by the cellulosome-producing bacterium Clostridium cellulolyticum.
    Ravachol J; Borne R; Tardif C; de Philip P; Fierobe HP
    J Biol Chem; 2014 Mar; 289(11):7335-48. PubMed ID: 24451379
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional subgenomics of Clostridium thermocellum cellulosomal genes: identification of the major catalytic components in the extracellular complex and detection of three new enzymes.
    Zverlov VV; Kellermann J; Schwarz WH
    Proteomics; 2005 Sep; 5(14):3646-53. PubMed ID: 16127726
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Revisiting the Regulation of the Primary Scaffoldin Gene in Clostridium thermocellum.
    Ortiz de Ora L; Muñoz-Gutiérrez I; Bayer EA; Shoham Y; Lamed R; Borovok I
    Appl Environ Microbiol; 2017 Apr; 83(8):. PubMed ID: 28159788
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The modular architecture of Cellvibrio japonicus mannanases in glycoside hydrolase families 5 and 26 points to differences in their role in mannan degradation.
    Hogg D; Pell G; Dupree P; Goubet F; Martín-Orúe SM; Armand S; Gilbert HJ
    Biochem J; 2003 May; 371(Pt 3):1027-43. PubMed ID: 12523937
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.