BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 16445891)

  • 1. Artificial N-functionalized UDP-glucosamine analogues as modified substrates for N-acetylglucosaminyl transferases.
    Lazarević D; Thiem J
    Carbohydr Res; 2006 Apr; 341(5):569-76. PubMed ID: 16445891
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Syntheses of unnatural N-substituted UDP-galactosamines as alternative substrates for N-acetylgalactosaminyl transferases.
    Lazarevic D; Thiem J
    Carbohydr Res; 2002 Nov; 337(21-23):2187-94. PubMed ID: 12433482
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of unnatural sugar nucleotides and their evaluation as donor substrates in glycosyltransferase-catalyzed reactions.
    Khaled A; Ivannikova T; Augé C
    Carbohydr Res; 2004 Nov; 339(16):2641-9. PubMed ID: 15519322
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemo-enzymatic synthesis of tetra-N-acetyl-chitotetraosyl allosamizoline.
    Huang GL; Mei XY; Zhang HC; Wang PG
    Bioorg Med Chem Lett; 2006 Jun; 16(11):2860-1. PubMed ID: 16563754
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Substrate specificity of N-acetylglucosaminyl(diphosphodolichol) N-acetylglucosaminyl transferase, a key enzyme in the dolichol pathway.
    Tai VW; O'Reilly MK; Imperiali B
    Bioorg Med Chem; 2001 May; 9(5):1133-40. PubMed ID: 11377171
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of deoxy and acylamino derivatives of lactose and use of these for probing the active site of Neisseria meningitidis N-acetylglucosaminyltransferase.
    Westerlind U; Hagback P; Tidbäck B; Wiik L; Blixt O; Razi N; Norberg T
    Carbohydr Res; 2005 Feb; 340(2):221-33. PubMed ID: 15639242
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Substrate specificity of N-acetylhexosaminidase from Aspergillus oryzae to artificial glycosyl acceptors having various substituents at the reducing ends.
    Ogata M; Zeng X; Usui T; Uzawa H
    Carbohydr Res; 2007 Jan; 342(1):23-30. PubMed ID: 17145046
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling bacterial UDP-HexNAc: polyprenol-P HexNAc-1-P transferases.
    Price NP; Momany FA
    Glycobiology; 2005 Sep; 15(9):29R-42R. PubMed ID: 15843595
    [TBL] [Abstract][Full Text] [Related]  

  • 9. X-ray crystal structures of rabbit N-acetylglucosaminyltransferase I (GnT I) in complex with donor substrate analogues.
    Gordon RD; Sivarajah P; Satkunarajah M; Ma D; Tarling CA; Vizitiu D; Withers SG; Rini JM
    J Mol Biol; 2006 Jun; 360(1):67-79. PubMed ID: 16769084
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glucose-6-phosphate as a probe for the glucosamine-6-phosphate N-acetyltransferase Michaelis complex.
    Hurtado-Guerrero R; Raimi O; Shepherd S; van Aalten DM
    FEBS Lett; 2007 Dec; 581(29):5597-600. PubMed ID: 18005663
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enzymatic supported synthesis of lacto-N-neotetraose using dendrimeric polyethylene glycol.
    Renaudie L; Daniellou R; Augé C; Le Narvor C
    Carbohydr Res; 2004 Feb; 339(3):693-8. PubMed ID: 15013407
    [TBL] [Abstract][Full Text] [Related]  

  • 12. One-step synthesis of labeled sugar nucleotides for protein O-GlcNAc modification studies by chemical function analysis of an archaeal protein.
    Mizanur RM; Jaipuri FA; Pohl NL
    J Am Chem Soc; 2005 Jan; 127(3):836-7. PubMed ID: 15656612
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Systematic synthesis of bisubstrate-type inhibitors of N-acetylglucosaminyltransferases.
    Hanashima S; Inamori K; Manabe S; Taniguchi N; Ito Y
    Chemistry; 2006 Apr; 12(13):3449-62. PubMed ID: 16534829
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measurement of UDP-N-acetylglucosaminyl transferase (OGT) in brain cytosol and characterization of anti-OGT antibodies.
    Marshall S; Duong T; Orbus RJ; Rumberger JM; Okuyama R
    Anal Biochem; 2003 Mar; 314(2):169-79. PubMed ID: 12654302
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-isosteric C-glycosyl analogues of natural nucleotide diphosphate sugars as glycosyltransferase inhibitors.
    Vidal S; Bruyère I; Malleron A; Augé C; Praly JP
    Bioorg Med Chem; 2006 Nov; 14(21):7293-301. PubMed ID: 16843664
    [TBL] [Abstract][Full Text] [Related]  

  • 16. N-Acetylhexosaminidase inhibitory properties of C-1 homologated GlcNAc- and GalNAc-thiazolines.
    Amorelli B; Yang C; Rempel B; Withers SG; Knapp S
    Bioorg Med Chem Lett; 2008 May; 18(9):2944-7. PubMed ID: 18406613
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploring specificity of glycosyltransferases: synthesis of new sugar nucleotide related molecules as putative donor substrates.
    Khaled A; Piotrowska O; Dominiak K; Augé C
    Carbohydr Res; 2008 Feb; 343(2):167-78. PubMed ID: 18048019
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of 1-D-6-O-[2-(N-hydroxyaminocarbonyl)amino-2-deoxy-alpha-D-glucopyranosyl]-myo-inositol 1-(n-octadecyl phosphate): a potential metalloenzyme inhibitor of glycosylphosphatidylinositol biosynthesis.
    Crossman AT; Urbaniak MD; Ferguson MA
    Carbohydr Res; 2008 Jul; 343(9):1478-81. PubMed ID: 18479678
    [TBL] [Abstract][Full Text] [Related]  

  • 19. UDP-GlcNAc Analogues as Inhibitors of O-GlcNAc Transferase (OGT): Spectroscopic, Computational, and Biological Studies.
    Ghirardello M; Perrone D; Chinaglia N; Sádaba D; Delso I; Tejero T; Marchesi E; Fogagnolo M; Rafie K; van Aalten DMF; Merino P
    Chemistry; 2018 May; 24(28):7264-7272. PubMed ID: 29513364
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The protective effects of PUGNAc on cardiac function after trauma-hemorrhage are mediated via increased protein O-GlcNAc levels.
    Zou L; Yang S; Hu S; Chaudry IH; Marchase RB; Chatham JC
    Shock; 2007 Apr; 27(4):402-8. PubMed ID: 17414423
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.