BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 16446216)

  • 1. First clinical experience with an automatic control system for rotary blood pumps during ergometry and right-heart catheterization.
    Schima H; Vollkron M; Jantsch U; Crevenna R; Roethy W; Benkowski R; Morello G; Quittan M; Hiesmayr M; Wieselthaler G
    J Heart Lung Transplant; 2006 Feb; 25(2):167-73. PubMed ID: 16446216
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a reliable automatic speed control system for rotary blood pumps.
    Vollkron M; Schima H; Huber L; Benkowski R; Morello G; Wieselthaler G
    J Heart Lung Transplant; 2005 Nov; 24(11):1878-85. PubMed ID: 16297795
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exercise capacity in patients supported with rotary blood pumps is improved by a spontaneous increase of pump flow at constant pump speed and by a rise in native cardiac output.
    Jacquet L; Vancaenegem O; Pasquet A; Matte P; Poncelet A; Price J; Gurné O; Noirhomme P
    Artif Organs; 2011 Jul; 35(7):682-90. PubMed ID: 21615428
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A control system for rotary blood pumps based on suction detection.
    Ferreira A; Boston JR; Antaki JF
    IEEE Trans Biomed Eng; 2009 Mar; 56(3):656-65. PubMed ID: 19272919
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of a suction detection system for axial blood pumps.
    Vollkron M; Schima H; Huber L; Benkowski R; Morello G; Wieselthaler G
    Artif Organs; 2004 Aug; 28(8):709-16. PubMed ID: 15270952
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automatic system for noninvasive blood pressure determination in rotary pump recipients.
    Schima H; Boehm H; Huber L; Schmallegger H; Vollkron M; Hiesmayr M; Noisser R; Wieselthaler G
    Artif Organs; 2004 May; 28(5):451-7. PubMed ID: 15113339
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hemodynamic and exercise performance with pulsatile and continuous-flow left ventricular assist devices.
    Haft J; Armstrong W; Dyke DB; Aaronson KD; Koelling TM; Farrar DJ; Pagani FD
    Circulation; 2007 Sep; 116(11 Suppl):I8-15. PubMed ID: 17846330
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pulsatile control of rotary blood pumps: Does the modulation waveform matter?
    Pirbodaghi T; Axiak S; Weber A; Gempp T; Vandenberghe S
    J Thorac Cardiovasc Surg; 2012 Oct; 144(4):970-7. PubMed ID: 22418246
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Control system for an implantable rotary blood pump.
    Nakata KI; Yoshikawa M; Takano T; Sankai Y; Ohtsuka G; Glueck J; Fujisawa A; Makinouchi K; Yokokawa M; Nosaka S; Nose Y
    Ann Thorac Cardiovasc Surg; 2000 Aug; 6(4):242-6. PubMed ID: 11042480
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of extremum seeking control to turbodynamic blood pumps.
    Gwak KW
    ASAIO J; 2007; 53(4):403-9. PubMed ID: 17667222
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adaptive physiological speed/flow control of rotary blood pumps in permanent implantation using intrinsic pump parameters.
    Wu Y
    ASAIO J; 2009; 55(4):335-9. PubMed ID: 19506462
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physiological control of dual rotary pumps as a biventricular assist device using a master/slave approach.
    Stevens MC; Wilson S; Bradley A; Fraser J; Timms D
    Artif Organs; 2014 Sep; 38(9):766-74. PubMed ID: 24749848
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of exercise and pump speed modulation on invasive hemodynamics in patients with centrifugal continuous-flow left ventricular assist devices.
    Muthiah K; Robson D; Prichard R; Walker R; Gupta S; Keogh AM; Macdonald PS; Woodard J; Kotlyar E; Dhital K; Granger E; Jansz P; Spratt P; Hayward CS
    J Heart Lung Transplant; 2015 Apr; 34(4):522-9. PubMed ID: 25662859
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Asymmetric speed modulation of a rotary blood pump affects ventricular unloading.
    Pirbodaghi T; Weber A; Axiak S; Carrel T; Vandenberghe S
    Eur J Cardiothorac Surg; 2013 Feb; 43(2):383-8. PubMed ID: 22689185
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fully autonomous preload-sensitive control of implantable rotary blood pumps.
    Arndt A; Nüsser P; Lampe B
    Artif Organs; 2010 Sep; 34(9):726-35. PubMed ID: 20883392
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physiological control of a rotary blood pump with selectable therapeutic options: control of pulsatility gradient.
    Arndt A; Nüsser P; Graichen K; Müller J; Lampe B
    Artif Organs; 2008 Oct; 32(10):761-71. PubMed ID: 18959664
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Suction events during left ventricular support and ventricular arrhythmias.
    Vollkron M; Voitl P; Ta J; Wieselthaler G; Schima H
    J Heart Lung Transplant; 2007 Aug; 26(8):819-25. PubMed ID: 17692786
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Advanced suction detection for an axial flow pump.
    Vollkron M; Schima H; Huber L; Benkowski R; Morello G; Wieselthaler G
    Artif Organs; 2006 Sep; 30(9):665-70. PubMed ID: 16934094
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Continuous flow total artificial heart: modeling and feedback control in a mock circulatory system.
    Khalil HA; Kerr DT; Franchek MA; Metcalfe RW; Benkowski RJ; Cohn WE; Tuzun E; Radovancevic B; Frazier OH; Kadipasaoglu KA
    ASAIO J; 2008; 54(3):249-55. PubMed ID: 18496274
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proof of concept: hemodynamic response to long-term partial ventricular support with the synergy pocket micro-pump.
    Meyns B; Klotz S; Simon A; Droogne W; Rega F; Griffith B; Dowling R; Zucker MJ; Burkhoff D
    J Am Coll Cardiol; 2009 Jun; 54(1):79-86. PubMed ID: 19555845
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.