These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
518 related articles for article (PubMed ID: 16446401)
21. Detection of c-myc oncogene amplification and chromosomal anomalies in metastatic prostatic carcinoma by fluorescence in situ hybridization. Jenkins RB; Qian J; Lieber MM; Bostwick DG Cancer Res; 1997 Feb; 57(3):524-31. PubMed ID: 9012485 [TBL] [Abstract][Full Text] [Related]
22. A probasin-large T antigen transgenic mouse line develops prostate adenocarcinoma and neuroendocrine carcinoma with metastatic potential. Masumori N; Thomas TZ; Chaurand P; Case T; Paul M; Kasper S; Caprioli RM; Tsukamoto T; Shappell SB; Matusik RJ Cancer Res; 2001 Mar; 61(5):2239-49. PubMed ID: 11280793 [TBL] [Abstract][Full Text] [Related]
23. Integrative analysis of genomic aberrations associated with prostate cancer progression. Kim JH; Dhanasekaran SM; Mehra R; Tomlins SA; Gu W; Yu J; Kumar-Sinha C; Cao X; Dash A; Wang L; Ghosh D; Shedden K; Montie JE; Rubin MA; Pienta KJ; Shah RB; Chinnaiyan AM Cancer Res; 2007 Sep; 67(17):8229-39. PubMed ID: 17804737 [TBL] [Abstract][Full Text] [Related]
25. [Promotor hypermethylation of E-cadherin, p16 and estrogen receptor in prostate carcinoma]. Yao Q; He XS; Zhang JM; He J Zhonghua Nan Ke Xue; 2006 Jan; 12(1):28-31. PubMed ID: 16483154 [TBL] [Abstract][Full Text] [Related]
27. PTOV1 expression predicts prostate cancer in men with isolated high-grade prostatic intraepithelial neoplasia in needle biopsy. Morote J; Fernández S; Alaña L; Iglesias C; Planas J; Reventós J; Ramón Y Cajal S; Paciucci R; de Torres IM Clin Cancer Res; 2008 May; 14(9):2617-22. PubMed ID: 18451224 [TBL] [Abstract][Full Text] [Related]
28. Methylation of the ASC gene promoter is associated with aggressive prostate cancer. Collard RL; Harya NS; Monzon FA; Maier CE; O'Keefe DS Prostate; 2006 May; 66(7):687-95. PubMed ID: 16425203 [TBL] [Abstract][Full Text] [Related]
29. DNA methylation paradigm shift: 15-lipoxygenase-1 upregulation in prostatic intraepithelial neoplasia and prostate cancer by atypical promoter hypermethylation. Kelavkar UP; Harya NS; Hutzley J; Bacich DJ; Monzon FA; Chandran U; Dhir R; O'Keefe DS Prostaglandins Other Lipid Mediat; 2007 Jan; 82(1-4):185-97. PubMed ID: 17164146 [TBL] [Abstract][Full Text] [Related]
30. Allelotyping analysis at chromosome 13q of high-grade prostatic intraepithelial neoplasia and clinically insignificant and significant prostate cancers. Lu W; Takahashi H; Furusato M; Maekawa S; Nakano M; Meng C; Kikuchi Y; Sudo A; Hano H Prostate; 2006 Mar; 66(4):405-12. PubMed ID: 16302266 [TBL] [Abstract][Full Text] [Related]
31. Microvessel density as a molecular marker for identifying high-grade prostatic intraepithelial neoplasia precursors to prostate cancer. Sinha AA; Quast BJ; Reddy PK; Lall V; Wilson MJ; Qian J; Bostwick DG Exp Mol Pathol; 2004 Oct; 77(2):153-9. PubMed ID: 15351240 [TBL] [Abstract][Full Text] [Related]
32. Epithelial and prostatic marker expression in short-term primary cultures of human prostate tissue samples. Festuccia C; Angelucci A; Gravina GL; Muzi P; Miano R; Vicentini C; Bologna M Int J Oncol; 2005 May; 26(5):1353-62. PubMed ID: 15809728 [TBL] [Abstract][Full Text] [Related]
33. Protein profiling of microdissected prostate tissue links growth differentiation factor 15 to prostate carcinogenesis. Cheung PK; Woolcock B; Adomat H; Sutcliffe M; Bainbridge TC; Jones EC; Webber D; Kinahan T; Sadar M; Gleave ME; Vielkind J Cancer Res; 2004 Sep; 64(17):5929-33. PubMed ID: 15342369 [TBL] [Abstract][Full Text] [Related]
34. p53 Alteration and chromosomal instability in prostatic high-grade intraepithelial neoplasia and concurrent carcinoma: analysis by immunohistochemistry, interphase in situ hybridization, and sequencing of laser-captured microdissected specimens. Al-Maghrabi J; Vorobyova L; Chapman W; Jewett M; Zielenska M; Squire JA Mod Pathol; 2001 Dec; 14(12):1252-62. PubMed ID: 11743048 [TBL] [Abstract][Full Text] [Related]
35. Immunohistochemical expression of retinoblastoma and p53 tumor suppressor genes in prostatic intraepithelial neoplasia: comparison with prostatic adenocarcinoma and benign prostate. Tamboli P; Amin MB; Xu HJ; Linden MD Mod Pathol; 1998 Mar; 11(3):247-52. PubMed ID: 9521470 [TBL] [Abstract][Full Text] [Related]
36. Expression of the RNA component of human telomerase (hTR) in prostate cancer, prostatic intraepithelial neoplasia, and normal prostate tissue. Paradis V; Dargère D; Laurendeau I; Benoît G; Vidaud M; Jardin A; Bedossa P J Pathol; 1999 Oct; 189(2):213-8. PubMed ID: 10547577 [TBL] [Abstract][Full Text] [Related]
37. Focal degeneration of basal cells and the resultant auto-immunoreactions: a novel mechanism for prostate tumor progression and invasion. Man YG; Gardner WA Med Hypotheses; 2008; 70(2):387-408. PubMed ID: 17658698 [TBL] [Abstract][Full Text] [Related]
38. Altered methylation of multiple genes in carcinogenesis of the prostate. Yamanaka M; Watanabe M; Yamada Y; Takagi A; Murata T; Takahashi H; Suzuki H; Ito H; Tsukino H; Katoh T; Sugimura Y; Shiraishi T Int J Cancer; 2003 Sep; 106(3):382-7. PubMed ID: 12845678 [TBL] [Abstract][Full Text] [Related]
39. Different patterns of p53 mutations in prostatic intraepithelial neoplasia and concurrent carcinoma: analysis of microdissected specimens. Yasunaga Y; Shin M; Fujita MQ; Nonomura N; Miki T; Okuyama A; Aozasa K Lab Invest; 1998 Oct; 78(10):1275-9. PubMed ID: 9800953 [TBL] [Abstract][Full Text] [Related]