BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 16446403)

  • 1. Ubiquitination of p53 at multiple sites in the DNA-binding domain.
    Chan WM; Mak MC; Fung TK; Lau A; Siu WY; Poon RY
    Mol Cancer Res; 2006 Jan; 4(1):15-25. PubMed ID: 16446403
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiple C-terminal lysine residues target p53 for ubiquitin-proteasome-mediated degradation.
    Rodriguez MS; Desterro JM; Lain S; Lane DP; Hay RT
    Mol Cell Biol; 2000 Nov; 20(22):8458-67. PubMed ID: 11046142
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A second p53 binding site in the central domain of Mdm2 is essential for p53 ubiquitination.
    Ma J; Martin JD; Zhang H; Auger KR; Ho TF; Kirkpatrick RB; Grooms MH; Johanson KO; Tummino PJ; Copeland RA; Lai Z
    Biochemistry; 2006 Aug; 45(30):9238-45. PubMed ID: 16866370
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Association of p19(ARF) with Mdm2 inhibits ubiquitin ligase activity of Mdm2 for tumor suppressor p53.
    Honda R; Yasuda H
    EMBO J; 1999 Jan; 18(1):22-7. PubMed ID: 9878046
    [TBL] [Abstract][Full Text] [Related]  

  • 5. C-terminal region of USP7/HAUSP is critical for deubiquitination activity and contains a second mdm2/p53 binding site.
    Ma J; Martin JD; Xue Y; Lor LA; Kennedy-Wilson KM; Sinnamon RH; Ho TF; Zhang G; Schwartz B; Tummino PJ; Lai Z
    Arch Biochem Biophys; 2010 Nov; 503(2):207-12. PubMed ID: 20816748
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiple lysine mutations in the C-terminal domain of p53 interfere with MDM2-dependent protein degradation and ubiquitination.
    Nakamura S; Roth JA; Mukhopadhyay T
    Mol Cell Biol; 2000 Dec; 20(24):9391-8. PubMed ID: 11094089
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dual-site regulation of MDM2 E3-ubiquitin ligase activity.
    Wallace M; Worrall E; Pettersson S; Hupp TR; Ball KL
    Mol Cell; 2006 Jul; 23(2):251-63. PubMed ID: 16857591
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The conformationally flexible S9-S10 linker region in the core domain of p53 contains a novel MDM2 binding site whose mutation increases ubiquitination of p53 in vivo.
    Shimizu H; Burch LR; Smith AJ; Dornan D; Wallace M; Ball KL; Hupp TR
    J Biol Chem; 2002 Aug; 277(32):28446-58. PubMed ID: 11925449
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Overexpression of Mdm2 and MdmX fusion proteins alters p53 mediated transactivation, ubiquitination, and degradation.
    Ghosh M; Huang K; Berberich SJ
    Biochemistry; 2003 Mar; 42(8):2291-9. PubMed ID: 12600196
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An N-terminal p14ARF peptide blocks Mdm2-dependent ubiquitination in vitro and can activate p53 in vivo.
    Midgley CA; Desterro JM; Saville MK; Howard S; Sparks A; Hay RT; Lane DP
    Oncogene; 2000 May; 19(19):2312-23. PubMed ID: 10822382
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphomimetic mutation of the N-terminal lid of MDM2 enhances the polyubiquitination of p53 through stimulation of E2-ubiquitin thioester hydrolysis.
    Fraser JA; Worrall EG; Lin Y; Landre V; Pettersson S; Blackburn E; Walkinshaw M; Muller P; Vojtesek B; Ball K; Hupp TR
    J Mol Biol; 2015 Apr; 427(8):1728-47. PubMed ID: 25543083
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Different effects of p14ARF on the levels of ubiquitinated p53 and Mdm2 in vivo.
    Xirodimas D; Saville MK; Edling C; Lane DP; LaĆ­n S
    Oncogene; 2001 Aug; 20(36):4972-83. PubMed ID: 11526482
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ubiquitination and degradation of mutant p53.
    Lukashchuk N; Vousden KH
    Mol Cell Biol; 2007 Dec; 27(23):8284-95. PubMed ID: 17908790
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The p53-Mdm2 module and the ubiquitin system.
    Michael D; Oren M
    Semin Cancer Biol; 2003 Feb; 13(1):49-58. PubMed ID: 12507556
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Destabilizing missense mutations in the tumour suppressor protein p53 enhance its ubiquitination in vitro and in vivo.
    Shimizu H; Saliba D; Wallace M; Finlan L; Langridge-Smith PR; Hupp TR
    Biochem J; 2006 Jul; 397(2):355-67. PubMed ID: 16579792
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The MDM2 ubiquitination signal in the DNA-binding domain of p53 forms a docking site for calcium calmodulin kinase superfamily members.
    Craig AL; Chrystal JA; Fraser JA; Sphyris N; Lin Y; Harrison BJ; Scott MT; Dornreiter I; Hupp TR
    Mol Cell Biol; 2007 May; 27(9):3542-55. PubMed ID: 17339337
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hypophosphorylation of Mdm2 augments p53 stability.
    Blattner C; Hay T; Meek DW; Lane DP
    Mol Cell Biol; 2002 Sep; 22(17):6170-82. PubMed ID: 12167711
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The contribution of the acidic domain of MDM2 to p53 and MDM2 stability.
    Argentini M; Barboule N; Wasylyk B
    Oncogene; 2001 Mar; 20(11):1267-75. PubMed ID: 11313871
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The nucleolar SUMO-specific protease SMT3IP1/SENP3 attenuates Mdm2-mediated p53 ubiquitination and degradation.
    Nishida T; Yamada Y
    Biochem Biophys Res Commun; 2011 Mar; 406(2):285-91. PubMed ID: 21316347
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mdm2 association with p53 targets its ubiquitination.
    Fuchs SY; Adler V; Buschmann T; Wu X; Ronai Z
    Oncogene; 1998 Nov; 17(19):2543-7. PubMed ID: 9824166
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.