These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
457 related articles for article (PubMed ID: 16446784)
1. Computational analysis and prediction of the binding motif and protein interacting partners of the Abl SH3 domain. Hou T; Chen K; McLaughlin WA; Lu B; Wang W PLoS Comput Biol; 2006 Jan; 2(1):e1. PubMed ID: 16446784 [TBL] [Abstract][Full Text] [Related]
2. Characterization of domain-peptide interaction interface: a case study on the amphiphysin-1 SH3 domain. Hou T; Zhang W; Case DA; Wang W J Mol Biol; 2008 Feb; 376(4):1201-14. PubMed ID: 18206907 [TBL] [Abstract][Full Text] [Related]
3. Mutational analysis of the regulatory function of the c-Abl Src homology 3 domain. Brasher BB; Roumiantsev S; Van Etten RA Oncogene; 2001 Nov; 20(53):7744-52. PubMed ID: 11753652 [TBL] [Abstract][Full Text] [Related]
4. Why ligand cross-reactivity is high within peptide recognition domain families? A case study on human c-Src SH3 domain. He P; Wu W; Wang HD; Liao KL; Zhang W; Lv FL; Yang K J Theor Biol; 2014 Jan; 340():30-7. PubMed ID: 24021866 [TBL] [Abstract][Full Text] [Related]
5. Crystal structure of the abl-SH3 domain complexed with a designed high-affinity peptide ligand: implications for SH3-ligand interactions. Pisabarro MT; Serrano L; Wilmanns M J Mol Biol; 1998 Aug; 281(3):513-21. PubMed ID: 9698566 [TBL] [Abstract][Full Text] [Related]
6. Distinct ligand preferences of Src homology 3 domains from Src, Yes, Abl, Cortactin, p53bp2, PLCgamma, Crk, and Grb2. Sparks AB; Rider JE; Hoffman NG; Fowlkes DM; Quillam LA; Kay BK Proc Natl Acad Sci U S A; 1996 Feb; 93(4):1540-4. PubMed ID: 8643668 [TBL] [Abstract][Full Text] [Related]
7. SH3-SPOT: an algorithm to predict preferred ligands to different members of the SH3 gene family. Brannetti B; Via A; Cestra G; Cesareni G; Helmer-Citterich M J Mol Biol; 2000 Apr; 298(2):313-28. PubMed ID: 10764600 [TBL] [Abstract][Full Text] [Related]
8. The high-resolution NMR structure of the R21A Spc-SH3:P41 complex: understanding the determinants of binding affinity by comparison with Abl-SH3. Casares S; Ab E; Eshuis H; Lopez-Mayorga O; van Nuland NA; Conejero-Lara F BMC Struct Biol; 2007 Apr; 7():22. PubMed ID: 17407569 [TBL] [Abstract][Full Text] [Related]
9. The Abl SH2-kinase linker naturally adopts a conformation competent for SH3 domain binding. Chen S; Brier S; Smithgall TE; Engen JR Protein Sci; 2007 Apr; 16(4):572-81. PubMed ID: 17327393 [TBL] [Abstract][Full Text] [Related]
10. Reexamination of the recognition preference of the specificity pocket of the Abl SH3 domain. Santamaria F; Wu Z; Boulègue C; Pál G; Lu W J Mol Recognit; 2003; 16(3):131-8. PubMed ID: 12833568 [TBL] [Abstract][Full Text] [Related]
11. Binding of the proline-rich segment of myelin basic protein to SH3 domains: spectroscopic, microarray, and modeling studies of ligand conformation and effects of posttranslational modifications. Polverini E; Rangaraj G; Libich DS; Boggs JM; Harauz G Biochemistry; 2008 Jan; 47(1):267-82. PubMed ID: 18067320 [TBL] [Abstract][Full Text] [Related]
12. Examining the specificity of Src homology 3 domain--ligand interactions with alkaline phosphatase fusion proteins. Yamabhai M; Kay BK Anal Biochem; 1997 Apr; 247(1):143-51. PubMed ID: 9126384 [TBL] [Abstract][Full Text] [Related]
13. Structure of a regulatory complex involving the Abl SH3 domain, the Crk SH2 domain, and a Crk-derived phosphopeptide. Donaldson LW; Gish G; Pawson T; Kay LE; Forman-Kay JD Proc Natl Acad Sci U S A; 2002 Oct; 99(22):14053-8. PubMed ID: 12384576 [TBL] [Abstract][Full Text] [Related]
14. Thermodynamic dissection of the binding energetics of proline-rich peptides to the Abl-SH3 domain: implications for rational ligand design. Palencia A; Cobos ES; Mateo PL; Martínez JC; Luque I J Mol Biol; 2004 Feb; 336(2):527-37. PubMed ID: 14757063 [TBL] [Abstract][Full Text] [Related]
15. Organization of the SH3-SH2 unit in active and inactive forms of the c-Abl tyrosine kinase. Nagar B; Hantschel O; Seeliger M; Davies JM; Weis WI; Superti-Furga G; Kuriyan J Mol Cell; 2006 Mar; 21(6):787-98. PubMed ID: 16543148 [TBL] [Abstract][Full Text] [Related]
16. High-resolution crystal structures of tyrosine kinase SH3 domains complexed with proline-rich peptides. Musacchio A; Saraste M; Wilmanns M Nat Struct Biol; 1994 Aug; 1(8):546-51. PubMed ID: 7664083 [TBL] [Abstract][Full Text] [Related]
17. Characterization of domain-peptide interaction interface: a generic structure-based model to decipher the binding specificity of SH3 domains. Hou T; Xu Z; Zhang W; McLaughlin WA; Case DA; Xu Y; Wang W Mol Cell Proteomics; 2009 Apr; 8(4):639-49. PubMed ID: 19023120 [TBL] [Abstract][Full Text] [Related]
18. Targeting the SH3 domain of human osteoclast-stimulating factor with rationally designed peptoid inhibitors. Han S; Liu Q; Wang F; Yuan Z J Pept Sci; 2016 Aug; 22(8):533-9. PubMed ID: 27443979 [TBL] [Abstract][Full Text] [Related]
19. Rational design of specific high-affinity peptide ligands for the Abl-SH3 domain. Pisabarro MT; Serrano L Biochemistry; 1996 Aug; 35(33):10634-40. PubMed ID: 8718852 [TBL] [Abstract][Full Text] [Related]
20. Detection of transient protein-protein interactions by bimolecular fluorescence complementation: the Abl-SH3 case. Morell M; Espargaró A; Avilés FX; Ventura S Proteomics; 2007 Apr; 7(7):1023-36. PubMed ID: 17352427 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]