BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 16446832)

  • 1. Lithocholic acid analogues, new and potent alpha-2,3-sialyltransferase inhibitors.
    Chang KH; Lee L; Chen J; Li WS
    Chem Commun (Camb); 2006 Feb; (6):629-31. PubMed ID: 16446832
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of B- and C-ring-modified lithocholic acid analogues as potential sialyltransferase inhibitors.
    Abdu-Allah HH; Chang TT; Li WS
    Steroids; 2016 Aug; 112():54-61. PubMed ID: 27154753
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biological evaluation of sulfonate and sulfate analogues of lithocholic acid: A bioisosterism-guided approach towards the discovery of potential sialyltransferase inhibitors for antimetastatic study.
    Perez SJLP; Chen CL; Chang TT; Li WS
    Bioorg Med Chem Lett; 2024 Jun; 105():129760. PubMed ID: 38641151
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of bisubstrate and donor analogues of sialyltransferase and their inhibitory activities.
    Izumi M; Wada K; Yuasa H; Hashimoto H
    J Org Chem; 2005 Oct; 70(22):8817-24. PubMed ID: 16238314
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel sialyltransferase inhibitor AL10 suppresses invasion and metastasis of lung cancer cells by inhibiting integrin-mediated signaling.
    Chiang CH; Wang CH; Chang HC; More SV; Li WS; Hung WC
    J Cell Physiol; 2010 May; 223(2):492-9. PubMed ID: 20112294
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sialyltransferase inhibition and recent advances.
    Wang L; Liu Y; Wu L; Sun XL
    Biochim Biophys Acta; 2016 Jan; 1864(1):143-53. PubMed ID: 26192491
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Systematic syntheses and inhibitory activities of bisubstrate-type inhibitors of sialyltransferases.
    Hinou H; Sun XL; Ito Y
    J Org Chem; 2003 Jul; 68(14):5602-13. PubMed ID: 12839452
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Potential sialyltransferase inhibitors based on neuraminyl substitution by hetaryl rings.
    Mathew B; Schmidt RR
    Carbohydr Res; 2007 Feb; 342(3-4):558-66. PubMed ID: 16989791
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stachybotrydial, a potent inhibitor of fucosyltransferase and sialyltransferase.
    Lin TW; Chang WW; Chen CC; Tsai YC
    Biochem Biophys Res Commun; 2005 Jun; 331(4):953-7. PubMed ID: 15882970
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Asymmetric synthesis and reactivity of potent sialyltransferase inhibitors based on transition-state analogues: supplementary data.
    Skropeta D; Schwörer R; Haag T; Schmidt RR
    Glycoconj J; 2004; 21(5):221-5. PubMed ID: 15486454
    [No Abstract]   [Full Text] [Related]  

  • 11. Recent development in the design of sialyltransferase inhibitors.
    Wang X; Zhang LH; Ye XS
    Med Res Rev; 2003 Jan; 23(1):32-47. PubMed ID: 12424752
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of CMP-9''-modified-sialic acids as donor substrate analogues for mammalian and bacterial sialyltransferases.
    Kajihara Y; Kamitani T; Sato R; Kamei N; Miyazaki T; Okamoto R; Sakakibara T; Tsuji T; Yamamoto T
    Carbohydr Res; 2007 Sep; 342(12-13):1680-8. PubMed ID: 17572399
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification and characterization of flavonoids as sialyltransferase inhibitors.
    Hidari KI; Oyama K; Ito G; Nakayama M; Inai M; Goto S; Kanai Y; Watanabe K; Yoshida K; Furuta T; Kan T; Suzuki T
    Biochem Biophys Res Commun; 2009 May; 382(3):609-13. PubMed ID: 19303395
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potent Metabolic Sialylation Inhibitors Based on C-5-Modified Fluorinated Sialic Acids.
    Heise T; Pijnenborg JFA; Büll C; van Hilten N; Kers-Rebel ED; Balneger N; Elferink H; Adema GJ; Boltje TJ
    J Med Chem; 2019 Jan; 62(2):1014-1021. PubMed ID: 30543426
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis and evaluation of phosphoramidate amino acid-based inhibitors of sialyltransferases.
    Whalen LJ; McEvoy KA; Halcomb RL
    Bioorg Med Chem Lett; 2003 Jan; 13(2):301-4. PubMed ID: 12482445
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sialyltransferase inhibitors: consideration of molecular shape and charge/hydrophobic interactions.
    Kumar R; Nasi R; Bhasin M; Huan Khieu N; Hsieh M; Gilbert M; Jarrell H; Zou W; Jennings HJ
    Carbohydr Res; 2013 Aug; 378():45-55. PubMed ID: 23374752
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3-ketocholanoic acid is the major in vitro human hepatic microsomal metabolite of lithocholic acid.
    Deo AK; Bandiera SM
    Drug Metab Dispos; 2009 Sep; 37(9):1938-47. PubMed ID: 19487251
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis and proteasome inhibition of lithocholic acid derivatives.
    Dang Z; Lin A; Ho P; Soroka D; Lee KH; Huang L; Chen CH
    Bioorg Med Chem Lett; 2011 Apr; 21(7):1926-8. PubMed ID: 21388808
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biotinylated lithocholic acids for affinity chromatography of mammalian DNA polymerases alpha and beta.
    Watanabe M; Hanashima S; Mizushina Y; Yoshida H; Oshige M; Sakaguchi K; Sugawara F
    Bioorg Med Chem Lett; 2002 Feb; 12(3):287-90. PubMed ID: 11814779
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis and biological evaluation of several dephosphonated analogues of CMP-Neu5Ac as inhibitors of GM3-synthase.
    Rota P; Cirillo F; Piccoli M; Gregorio A; Tettamanti G; Allevi P; Anastasia L
    Chemistry; 2015 Oct; 21(41):14614-29. PubMed ID: 26397189
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.