These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 16447039)

  • 21. Synthesis and coating of cobalt ferrite nanoparticles: a first step toward the obtainment of new magnetic nanocarriers.
    Baldi G; Bonacchi D; Franchini MC; Gentili D; Lorenzi G; Ricci A; Ravagli C
    Langmuir; 2007 Mar; 23(7):4026-8. PubMed ID: 17335257
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Shell crosslinked knedel-like nanoparticles for delivery of cisplatin: effects of crosslinking.
    Zhang F; Elsabahy M; Zhang S; Lin LY; Zou J; Wooley KL
    Nanoscale; 2013 Apr; 5(8):3220-5. PubMed ID: 23474773
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biocompatible Zr-based nanoscale MOFs coated with modified poly(ε-caprolactone) as anticancer drug carriers.
    Filippousi M; Turner S; Leus K; Siafaka PI; Tseligka ED; Vandichel M; Nanaki SG; Vizirianakis IS; Bikiaris DN; Van Der Voort P; Van Tendeloo G
    Int J Pharm; 2016 Jul; 509(1-2):208-218. PubMed ID: 27235556
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Magnetic drug targeting in a rhabdomyosarcoma rat model using magnetite-dextran composite nanoparticle-bound mitoxantrone and 0.6 tesla extracorporeal magnets - sarcoma treatment in progress.
    Krukemeyer MG; Krenn V; Jakobs M; Wagner W
    J Drug Target; 2012 Feb; 20(2):185-93. PubMed ID: 22044194
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mitoxantrone loaded superparamagnetic nanoparticles for drug targeting: a versatile and sensitive method for quantification of drug enrichment in rabbit tissues using HPLC-UV.
    Tietze R; Schreiber E; Lyer S; Alexiou C
    J Biomed Biotechnol; 2010; 2010():597304. PubMed ID: 20490266
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Doxorubicin loaded magnetic gold nanoparticles for in vivo targeted drug delivery.
    Elbialy NS; Fathy MM; Khalil WM
    Int J Pharm; 2015 Jul; 490(1-2):190-9. PubMed ID: 25997662
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A cell-targeted chemotherapeutic nanomedicine strategy for oral squamous cell carcinoma therapy.
    Wang ZQ; Liu K; Huo ZJ; Li XC; Wang M; Liu P; Pang B; Wang SJ
    J Nanobiotechnology; 2015 Oct; 13():63. PubMed ID: 26427800
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The rise and rise of stealth nanocarriers for cancer therapy: passive versus active targeting.
    Huynh NT; Roger E; Lautram N; Benoît JP; Passirani C
    Nanomedicine (Lond); 2010 Nov; 5(9):1415-33. PubMed ID: 21128723
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Role of integrated cancer nanomedicine in overcoming drug resistance.
    Iyer AK; Singh A; Ganta S; Amiji MM
    Adv Drug Deliv Rev; 2013 Nov; 65(13-14):1784-802. PubMed ID: 23880506
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Beta-casein-based nanovehicles for oral delivery of chemotherapeutic drugs: drug-protein interactions and mitoxantrone loading capacity.
    Shapira A; Markman G; Assaraf YG; Livney YD
    Nanomedicine; 2010 Aug; 6(4):547-55. PubMed ID: 20100598
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy.
    Pérez-Herrero E; Fernández-Medarde A
    Eur J Pharm Biopharm; 2015 Jun; 93():52-79. PubMed ID: 25813885
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Quantitative Examination of the Active Targeting Effect: The Key Factor for Maximal Tumor Accumulation and Retention of Short-Circulated Biopolymeric Nanocarriers.
    Wang J; Lee GY; Lu Q; Peng X; Wu J; Wu S; Kairdolf BA; Nie S; Wang Y; Lane LA
    Bioconjug Chem; 2017 May; 28(5):1351-1355. PubMed ID: 28448116
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Supramolecular nanoscale assemblies for cancer diagnosis and therapy.
    Coelho SC; Pereira MC; Juzeniene A; Juzenas P; Coelho MAN
    J Control Release; 2015 Sep; 213():152-167. PubMed ID: 26160308
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Prussian Blue Derived Nanoporous Iron Oxides as Anticancer Drug Carriers for Magnetic-Guided Chemotherapy.
    Zakaria MB; Belik AA; Liu CH; Hsieh HY; Liao YT; Malgras V; Yamauchi Y; Wu KC
    Chem Asian J; 2015 Jul; 10(7):1457-62. PubMed ID: 25944287
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dual nanoparticle drug delivery: the future of anticancer therapies?
    King MR; Mohamed ZJ
    Nanomedicine (Lond); 2017 Jan; 12(2):95-98. PubMed ID: 27885896
    [No Abstract]   [Full Text] [Related]  

  • 36. Layer-by-layer nanoparticle platform for cancer active targeting.
    Suh MS; Shen J; Kuhn LT; Burgess DJ
    Int J Pharm; 2017 Jan; 517(1-2):58-66. PubMed ID: 27923697
    [TBL] [Abstract][Full Text] [Related]  

  • 37. In vivo risk evaluation of carbon-coated iron carbide nanoparticles based on short- and long-term exposure scenarios.
    Herrmann IK; Beck-Schimmer B; Schumacher CM; Gschwind S; Kaech A; Ziegler U; Clavien PA; Günther D; Stark WJ; Graf R; Schlegel AA
    Nanomedicine (Lond); 2016 Apr; 11(7):783-96. PubMed ID: 26979124
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biopolymeric alginate-chitosan nanoparticles as drug delivery carriers for cancer therapy.
    Bhunchu S; Rojsitthisak P
    Pharmazie; 2014 Aug; 69(8):563-70. PubMed ID: 25158565
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Preparation, characterization, and in vivo evaluation of mitoxantrone-loaded, folate-conjugated albumin nanoparticles.
    Zhang LK; Hou SX; Zhang JQ; Hu WJ; Wang CY
    Arch Pharm Res; 2010 Aug; 33(8):1193-8. PubMed ID: 20803122
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Synthesis of nanocarriers with remote magnetic drug release control and enhanced drug delivery for intracellular targeting of cancer cells.
    Tung WL; Hu SH; Liu DM
    Acta Biomater; 2011 Jul; 7(7):2873-82. PubMed ID: 21439410
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.