These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 1644749)

  • 1. Identification of amino acid substitutions that alter the substrate specificity of TEM-1 beta-lactamase.
    Palzkill T; Botstein D
    J Bacteriol; 1992 Aug; 174(16):5237-43. PubMed ID: 1644749
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Systematic mutagenesis of the active site omega loop of TEM-1 beta-lactamase.
    Petrosino JF; Palzkill T
    J Bacteriol; 1996 Apr; 178(7):1821-8. PubMed ID: 8606154
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolution of antibiotic resistance: several different amino acid substitutions in an active site loop alter the substrate profile of beta-lactamase.
    Palzkill T; Le QQ; Venkatachalam KV; LaRocco M; Ocera H
    Mol Microbiol; 1994 Apr; 12(2):217-29. PubMed ID: 8057847
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiple substitutions at position 104 of beta-lactamase TEM-1: assessing the role of this residue in substrate specificity.
    Petit A; Maveyraud L; Lenfant F; Samama JP; Labia R; Masson JM
    Biochem J; 1995 Jan; 305 ( Pt 1)(Pt 1):33-40. PubMed ID: 7826350
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probing the active site of beta-lactamase R-TEM1 by informational suppression.
    Lenfant F; Labia R; Masson JM
    Biochimie; 1990; 72(6-7):495-503. PubMed ID: 2124150
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Amino acid sequence determinants of beta-lactamase structure and activity.
    Huang W; Petrosino J; Hirsch M; Shenkin PS; Palzkill T
    J Mol Biol; 1996 May; 258(4):688-703. PubMed ID: 8637002
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cephalosporin substrate specificity determinants of TEM-1 beta-lactamase.
    Cantu C; Huang W; Palzkill T
    J Biol Chem; 1997 Nov; 272(46):29144-50. PubMed ID: 9360991
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of TEM-1 beta-lactamase mutants from positions 238 to 241 with increased catalytic efficiency for ceftazidime.
    Venkatachalam KV; Huang W; LaRocco M; Palzkill T
    J Biol Chem; 1994 Sep; 269(38):23444-50. PubMed ID: 8089110
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular basis for the catalytic specificity of the CTX-M extended-spectrum β-lactamases.
    Adamski CJ; Cardenas AM; Brown NG; Horton LB; Sankaran B; Prasad BV; Gilbert HF; Palzkill T
    Biochemistry; 2015 Jan; 54(2):447-57. PubMed ID: 25489790
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probing beta-lactamase structure and function using random replacement mutagenesis.
    Palzkill T; Botstein D
    Proteins; 1992 Sep; 14(1):29-44. PubMed ID: 1329081
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel extended-spectrum beta-lactamase CTX-M-23 with a P167T substitution in the active-site omega loop associated with ceftazidime resistance.
    Stürenburg E; Kühn A; Mack D; Laufs R
    J Antimicrob Chemother; 2004 Aug; 54(2):406-9. PubMed ID: 15201232
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Amino acid sequence determinants of extended spectrum cephalosporin hydrolysis by the class C P99 beta-lactamase.
    Zhang Z; Yu Y; Musser JM; Palzkill T
    J Biol Chem; 2001 Dec; 276(49):46568-74. PubMed ID: 11591698
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A triple mutant in the Ω-loop of TEM-1 β-lactamase changes the substrate profile via a large conformational change and an altered general base for catalysis.
    Stojanoski V; Chow DC; Hu L; Sankaran B; Gilbert HF; Prasad BV; Palzkill T
    J Biol Chem; 2015 Apr; 290(16):10382-94. PubMed ID: 25713062
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synergistic effects of functionally distinct substitutions in β-lactamase variants shed light on the evolution of bacterial drug resistance.
    Patel MP; Hu L; Brown CA; Sun Z; Adamski CJ; Stojanoski V; Sankaran B; Prasad BVV; Palzkill T
    J Biol Chem; 2018 Nov; 293(46):17971-17984. PubMed ID: 30275013
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selection strategy for site-directed mutagenesis based on altered beta-lactamase specificity.
    Andrews CA; Lesley SA
    Biotechniques; 1998 Jun; 24(6):972-4, 976, 978 passim. PubMed ID: 9631188
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mutagenesis of amino acid residues in the SHV-1 beta-lactamase: the premier role of Gly238Ser in penicillin and cephalosporin resistance.
    Hujer AM; Hujer KM; Bonomo RA
    Biochim Biophys Acta; 2001 May; 1547(1):37-50. PubMed ID: 11343789
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of residues 104, 164, 166, 238 and 240 in the substrate profile of PER-1 beta-lactamase hydrolysing third-generation cephalosporins.
    Bouthors AT; Dagoneau-Blanchard N; Naas T; Nordmann P; Jarlier V; Sougakoff W
    Biochem J; 1998 Mar; 330 ( Pt 3)(Pt 3):1443-9. PubMed ID: 9494118
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural and biochemical evidence that a TEM-1 beta-lactamase N170G active site mutant acts via substrate-assisted catalysis.
    Brown NG; Shanker S; Prasad BV; Palzkill T
    J Biol Chem; 2009 Nov; 284(48):33703-12. PubMed ID: 19812041
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selection and characterization of amino acid substitutions at residues 237-240 of TEM-1 beta-lactamase with altered substrate specificity for aztreonam and ceftazidime.
    Cantu C; Huang W; Palzkill T
    J Biol Chem; 1996 Sep; 271(37):22538-45. PubMed ID: 8798421
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mutagenesis and structural analysis reveal the CTX-M β-lactamase active site is optimized for cephalosporin catalysis and drug resistance.
    Lu S; Montoya M; Hu L; Neetu N; Sankaran B; Prasad BVV; Palzkill T
    J Biol Chem; 2023 May; 299(5):104630. PubMed ID: 36963495
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.