These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 1644757)

  • 1. Electrogenic malate uptake and improved growth energetics of the malolactic bacterium Leuconostoc oenos grown on glucose-malate mixtures.
    Loubiere P; Salou P; Leroy MJ; Lindley ND; Pareilleux A
    J Bacteriol; 1992 Aug; 174(16):5302-8. PubMed ID: 1644757
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Uniport of monoanionic L-malate in membrane vesicles from Leuconostoc oenos.
    Salema M; Poolman B; Lolkema JS; Dias MC; Konings WN
    Eur J Biochem; 1994 Oct; 225(1):289-95. PubMed ID: 7925448
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The proton motive force generated in Leuconostoc oenos by L-malate fermentation.
    Salema M; Lolkema JS; San Romão MV; Lourero Dias MC
    J Bacteriol; 1996 Jun; 178(11):3127-32. PubMed ID: 8655490
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Malolactic fermentation: electrogenic malate uptake and malate/lactate antiport generate metabolic energy.
    Poolman B; Molenaar D; Smid EJ; Ubbink T; Abee T; Renault PP; Konings WN
    J Bacteriol; 1991 Oct; 173(19):6030-7. PubMed ID: 1917837
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrogenic L-malate transport by Lactobacillus plantarum: a basis for energy derivation from malolactic fermentation.
    Olsen EB; Russell JB; Henick-Kling T
    J Bacteriol; 1991 Oct; 173(19):6199-206. PubMed ID: 1917854
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro reassembly of the malolactic fermentation pathway of Leuconostoc oenos (Oenococcus oeni).
    Salema M; Capucho I; Poolman B; San Romão MV; Dias MC
    J Bacteriol; 1996 Sep; 178(18):5537-9. PubMed ID: 8808948
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemiosmotic energy from malolactic fermentation.
    Cox DJ; Henick-Kling T
    J Bacteriol; 1989 Oct; 171(10):5750-2. PubMed ID: 2793835
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biochemical basis for glucose-induced inhibition of malolactic fermentation in Leuconostoc oenos.
    Miranda M; Ramos A; Veiga-da-Cunha M; Loureiro-Dias MC; Santos H
    J Bacteriol; 1997 Sep; 179(17):5347-54. PubMed ID: 9286987
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Growth and energetics of Leuconostoc oenos during cometabolism of glucose with citrate or fructose.
    Salou P; Loubiere P; Pareilleux A
    Appl Environ Microbiol; 1994 May; 60(5):1459-66. PubMed ID: 8017930
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of transport processes in survival of lactic acid bacteria. Energy transduction and multidrug resistance.
    Konings WN; Lolkema JS; Bolhuis H; van Veen HW; Poolman B; Driessen AJ
    Antonie Van Leeuwenhoek; 1997 Feb; 71(1-2):117-28. PubMed ID: 9049023
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Membrane potential-generating transport of citrate and malate catalyzed by CitP of Leuconostoc mesenteroides.
    Marty-Teysset C; Lolkema JS; Schmitt P; Divies C; Konings WN
    J Biol Chem; 1995 Oct; 270(43):25370-6. PubMed ID: 7592702
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of malolactic fermentation in lactic acid bacteria.
    Renault P; Gaillardin C; Heslot H
    Biochimie; 1988 Mar; 70(3):375-9. PubMed ID: 3139055
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Growth and energetics of Leuconostoc mesenteroides NRRL B-1299 during metabolism of various sugars and their consequences for dextransucrase production.
    Dols M; Chraibi W; Remaud-Simeon M; Lindley ND; Monsan PF
    Appl Environ Microbiol; 1997 Jun; 63(6):2159-65. PubMed ID: 9172334
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proton motive force generation by citrolactic fermentation in Leuconostoc mesenteroides.
    Marty-Teysset C; Posthuma C; Lolkema JS; Schmitt P; Divies C; Konings WN
    J Bacteriol; 1996 Apr; 178(8):2178-85. PubMed ID: 8636016
    [TBL] [Abstract][Full Text] [Related]  

  • 15. L-malate transport and proton symport in vesicles prepared from Pseudomonas putida.
    Agbanyo FR; Moses G; Taylor NF
    Biochem Cell Biol; 1986 Nov; 64(11):1190-4. PubMed ID: 3030368
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new approach for selection of Oenococcus oeni strains in order to produce malolactic starters.
    Coucheney F; Desroche N; Bou M; Tourdot-Maréchal R; Dulau L; Guzzo J
    Int J Food Microbiol; 2005 Dec; 105(3):463-70. PubMed ID: 16081179
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energy conservation in malolactic fermentation by Lactobacillus plantarum and Lactobacillus sake.
    Kolb S; Otte H; Nagel B; Schink B
    Arch Microbiol; 1992; 157(5):457-63. PubMed ID: 1510572
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cloning and characterization of the genes encoding the malolactic enzyme and the malate permease of Leuconostoc oenos.
    Labarre C; Guzzo J; Cavin JF; Diviès C
    Appl Environ Microbiol; 1996 Apr; 62(4):1274-82. PubMed ID: 8919788
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Uniport of anionic citrate and proton consumption in citrate metabolism generates a proton motive force in Leuconostoc oenos.
    Ramos A; Poolman B; Santos H; Lolkema JS; Konings WN
    J Bacteriol; 1994 Aug; 176(16):4899-905. PubMed ID: 8051003
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proton motive force, energy recycling by end product excretion, and metabolic uncoupling during anaerobic growth of Pseudomonas mendocina.
    Verdoni N; Aon MA; Lebeault JM; Thomas D
    J Bacteriol; 1990 Dec; 172(12):6673-81. PubMed ID: 2254245
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.