These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 1644770)
21. Binding-protein-dependent lactose transport in Agrobacterium radiobacter. Greenwood JA; Cornish A; Jones CW J Bacteriol; 1990 Apr; 172(4):1703-10. PubMed ID: 2318800 [TBL] [Abstract][Full Text] [Related]
22. Evidence for structural symmetry and functional asymmetry in the lactose permease of Escherichia coli. Green AL; Hrodey HA; Brooker RJ Biochemistry; 2003 Sep; 42(38):11226-33. PubMed ID: 14503872 [TBL] [Abstract][Full Text] [Related]
23. Possible salt bridges between transmembrane alpha-helices of the lactose carrier of Escherichia coli. Lee JI; Hwang PP; Hansen C; Wilson TH J Biol Chem; 1992 Oct; 267(29):20758-64. PubMed ID: 1400392 [TBL] [Abstract][Full Text] [Related]
24. An analysis of lactose permease "sugar specificity" mutations which also affect the coupling between proton and lactose transport. I. Val177 and Val177/Asn319 permeases facilitate proton uniport and sugar uniport. Brooker RJ J Biol Chem; 1991 Mar; 266(7):4131-8. PubMed ID: 1999407 [TBL] [Abstract][Full Text] [Related]
25. Characterization and sequencing of the lac Y54-41 "uncoupled" mutant of the lactose permease. Brooker RJ; Myster SH; Wilson TH J Biol Chem; 1989 May; 264(14):8135-40. PubMed ID: 2542266 [TBL] [Abstract][Full Text] [Related]
26. Ligand-induced movement of helix X in the lactose permease from Escherichia coli: a fluorescence quenching study. Wang Q; Matsushita K; de Foresta B; le Maire M; Kaback HR Biochemistry; 1997 Nov; 36(46):14120-7. PubMed ID: 9369484 [TBL] [Abstract][Full Text] [Related]
27. Isolation and characterization of thiodigalactoside-resistant mutants of the lactose permease which possess an enhanced recognition for maltose. Franco PJ; Eelkema JA; Brooker RJ J Biol Chem; 1989 Sep; 264(27):15988-92. PubMed ID: 2674122 [TBL] [Abstract][Full Text] [Related]
28. Suppressor analysis of mutations in the loop 2-3 motif of lactose permease: evidence that glycine-64 is an important residue for conformational changes. Jessen-Marshall AE; Parker NJ; Brooker RJ J Bacteriol; 1997 Apr; 179(8):2616-22. PubMed ID: 9098060 [TBL] [Abstract][Full Text] [Related]
29. Altered sugar selection and transport conferred by spontaneous point and deletion mutations in the lactose carrier of Escherichia coli. Shinnick SG; Varela MF J Membr Biol; 2002 Oct; 189(3):191-9. PubMed ID: 12395284 [TBL] [Abstract][Full Text] [Related]
30. Asp-51 and Asp-120 are important for the transport function of the Escherichia coli melibiose carrier. Wilson DM; Wilson TH J Bacteriol; 1992 May; 174(9):3083-6. PubMed ID: 1569035 [TBL] [Abstract][Full Text] [Related]
31. Galactoside-dependent proton transport by mutants of the Escherichia coli lactose carrier. Replacement of histidine 322 by tyrosine or phenylalanine. King SC; Wilson TH J Biol Chem; 1989 May; 264(13):7390-4. PubMed ID: 2540191 [TBL] [Abstract][Full Text] [Related]
32. Mutations that simultaneously alter both sugar and cation specificity in the melibiose carrier of Escherichia coli. Botfield MC; Wilson TH J Biol Chem; 1988 Sep; 263(26):12909-15. PubMed ID: 3047112 [TBL] [Abstract][Full Text] [Related]
33. Cysteine mutagenesis of the amino acid residues of transmembrane helix I in the melibiose carrier of Escherichia coli. Ding PZ; Wilson TH Biochemistry; 2001 May; 40(18):5506-10. PubMed ID: 11331015 [TBL] [Abstract][Full Text] [Related]
34. Close approximation of putative alpha -helices II, IV, VII, X, and XI in the translocation pathway of the lactose transport protein of Streptococcus thermophilus. Veenhoff LM; Geertsma ER; Knol J; Poolman B J Biol Chem; 2000 Aug; 275(31):23834-40. PubMed ID: 10816556 [TBL] [Abstract][Full Text] [Related]
35. A five-residue sequence near the carboxyl terminus of the polytopic membrane protein lac permease is required for stability within the membrane. Roepe PD; Zbar RI; Sarkar HK; Kaback HR Proc Natl Acad Sci U S A; 1989 Jun; 86(11):3992-6. PubMed ID: 2657733 [TBL] [Abstract][Full Text] [Related]
36. Cysteine scanning mutagenesis of putative transmembrane helices IX and X in the lactose permease of Escherichia coli. Sahin-Tóth M; Kaback HR Protein Sci; 1993 Jun; 2(6):1024-33. PubMed ID: 8318887 [TBL] [Abstract][Full Text] [Related]
37. Cysteine-scanning mutagenesis of helix II and flanking hydrophilic domains in the lactose permease of Escherichia coli. Frillingos S; Sun J; Gonzalez A; Kaback HR Biochemistry; 1997 Jan; 36(1):269-73. PubMed ID: 8993343 [TBL] [Abstract][Full Text] [Related]
38. Cysteine-scanning mutagenesis of helix VI and the flanking hydrophilic domains on the lactose permease of Escherichia coli. Frillingos S; Kaback HR Biochemistry; 1996 Apr; 35(16):5333-8. PubMed ID: 8611521 [TBL] [Abstract][Full Text] [Related]
39. Manipulating conformational equilibria in the lactose permease of Escherichia coli. Weinglass AB; Sondej M; Kaback HR J Mol Biol; 2002 Jan; 315(4):561-71. PubMed ID: 11812130 [TBL] [Abstract][Full Text] [Related]
40. Arg-52 in the melibiose carrier of Escherichia coli is important for cation-coupled sugar transport and participates in an intrahelical salt bridge. Franco PJ; Wilson TH J Bacteriol; 1999 Oct; 181(20):6377-86. PubMed ID: 10515928 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]