BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 16447905)

  • 1. The effect of a biphasic ceramic on calvarial bone regeneration in rats.
    Develioğlu H; Koptagel E; Gedik R; Dupoirieux L
    J Oral Implantol; 2005; 31(6):309-12. PubMed ID: 16447905
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessment of the effect of a biphasic ceramic on bone response in a rat calvarial defect model.
    Develioğlu H; Saraydin SU; Bolayir G; Dupoirieux L
    J Biomed Mater Res A; 2006 Jun; 77(3):627-31. PubMed ID: 16514598
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Early effect of platelet-rich plasma on bone healing in combination with an osteoconductive material in rat cranial defects.
    Plachokova AS; van den Dolder J; Stoelinga PJ; Jansen JA
    Clin Oral Implants Res; 2007 Apr; 18(2):244-51. PubMed ID: 17348890
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Histological findings of long-term healing of the experimental defects by application of a synthetic biphasic ceramic in rats.
    Develioglu H; Saraydin SU; Dupoirieux L; Sahin ZD
    J Biomed Mater Res A; 2007 Feb; 80(2):505-8. PubMed ID: 17120224
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of the long-term results of rat cranial bone repair using a particular xenograft.
    Develioglu H; Saraydin S; Kartal U; Taner L
    J Oral Implantol; 2010; 36(3):167-73. PubMed ID: 20553170
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calvarial bone regeneration by a combination of natural anorganic bovine-derived hydroxyapatite matrix coupled with a synthetic cell-binding peptide (PepGen): an experimental study in rats.
    Mardas N; Stavropoulos A; Karring T
    Clin Oral Implants Res; 2008 Oct; 19(10):1010-5. PubMed ID: 18828817
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The use of hydroxyapatite and autogenous cancellous bone grafts to repair bone defects in rats.
    Silva RV; Camilli JA; Bertran CA; Moreira NH
    Int J Oral Maxillofac Surg; 2005 Mar; 34(2):178-84. PubMed ID: 15695048
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomechanical evaluation of rat skull defects, 1, 3, and 6 months after implantation with osteopromotive substances.
    Jones L; Thomsen JS; Mosekilde L; Bosch C; Melsen B
    J Craniomaxillofac Surg; 2007 Dec; 35(8):350-7. PubMed ID: 17951064
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An experimental model in calvaria to evaluate bone therapies.
    Aybar Odstrcil A; Territoriale E; Missana L
    Acta Odontol Latinoam; 2005; 18(2):63-7. PubMed ID: 16673794
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bone regeneration with BMP-2 and hydroxyapatite in critical-size calvarial defects in rats.
    Notodihardjo FZ; Kakudo N; Kushida S; Suzuki K; Kusumoto K
    J Craniomaxillofac Surg; 2012 Apr; 40(3):287-91. PubMed ID: 21737289
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of enamel matrix derivative on bioactive glass in rat calvarium defects.
    Potijanyakul P; Sattayasansakul W; Pongpanich S; Leepong N; Kintarak S
    J Oral Implantol; 2010; 36(3):195-204. PubMed ID: 20553173
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The bone regenerative effect of platelet-rich plasma in combination with an osteoconductive material in rat cranial defects.
    Plachokova AS; van den Dolder J; Stoelinga PJ; Jansen JA
    Clin Oral Implants Res; 2006 Jun; 17(3):305-11. PubMed ID: 16672026
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bone regenerative properties of rat, goat and human platelet-rich plasma.
    Plachokova AS; van den Dolder J; van den Beucken JJ; Jansen JA
    Int J Oral Maxillofac Surg; 2009 Aug; 38(8):861-9. PubMed ID: 19443180
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bone regeneration of critical calvarial defect in goat model by PLGA/TCP/rhBMP-2 scaffolds prepared by low-temperature rapid-prototyping technology.
    Yu D; Li Q; Mu X; Chang T; Xiong Z
    Int J Oral Maxillofac Surg; 2008 Oct; 37(10):929-34. PubMed ID: 18768295
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bone regeneration with algae-derived hydroxyapatite: a pilot histologic and histomorphometric study in rabbit tibia defects.
    Scarano A; Perrotti V; Degidi M; Piattelli A; Iezzi G
    Int J Oral Maxillofac Implants; 2012; 27(2):336-40. PubMed ID: 22442772
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Histologic effect of pure-phase beta-tricalcium phosphate on bone regeneration in human artificial jawbone defects.
    Trisi P; Rao W; Rebaudi A; Fiore P
    Int J Periodontics Restorative Dent; 2003 Feb; 23(1):69-77. PubMed ID: 12617370
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bone and suture regeneration in calvarial defects by e-PTFE-membranes and demineralized bone matrix and the impact on calvarial growth: an experimental study in the rat.
    Mardas N; Kostopoulos L; Karring T
    J Craniofac Surg; 2002 May; 13(3):453-62; discussion 462-4. PubMed ID: 12040218
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bone regeneration using beta-tricalcium phosphate in a calcium sulfate matrix.
    Podaropoulos L; Veis AA; Papadimitriou S; Alexandridis C; Kalyvas D
    J Oral Implantol; 2009; 35(1):28-36. PubMed ID: 19288885
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Autogeneic bone marrow and porous biphasic calcium phosphate ceramic for segmental bone defects in the canine ulna.
    Grundel RE; Chapman MW; Yee T; Moore DC
    Clin Orthop Relat Res; 1991 May; (266):244-58. PubMed ID: 1850335
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Clinical and histologic observation of replacement of biphasic calcium phosphate by bone tissue in monkeys.
    Hashimoto-Uoshima M; Ishikawa I; Kinoshita A; Weng HT; Oda S
    Int J Periodontics Restorative Dent; 1995 Apr; 15(2):205-13. PubMed ID: 8593983
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.