These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
192 related articles for article (PubMed ID: 16447962)
1. Efficient algorithms and software for detection of full-length LTR retrotransposons. Kalyanaraman A; Aluru S Proc IEEE Comput Syst Bioinform Conf; 2005; ():56-64. PubMed ID: 16447962 [TBL] [Abstract][Full Text] [Related]
2. Efficient algorithms and software for detection of full-length LTR retrotransposons. Kalyanaraman A; Aluru S J Bioinform Comput Biol; 2006 Apr; 4(2):197-216. PubMed ID: 16819780 [TBL] [Abstract][Full Text] [Related]
3. LTRharvest, an efficient and flexible software for de novo detection of LTR retrotransposons. Ellinghaus D; Kurtz S; Willhoeft U BMC Bioinformatics; 2008 Jan; 9():18. PubMed ID: 18194517 [TBL] [Abstract][Full Text] [Related]
4. De novo identification of LTR retrotransposons in eukaryotic genomes. Rho M; Choi JH; Kim S; Lynch M; Tang H BMC Genomics; 2007 Apr; 8():90. PubMed ID: 17407597 [TBL] [Abstract][Full Text] [Related]
5. LTR_FINDER: an efficient tool for the prediction of full-length LTR retrotransposons. Xu Z; Wang H Nucleic Acids Res; 2007 Jul; 35(Web Server issue):W265-8. PubMed ID: 17485477 [TBL] [Abstract][Full Text] [Related]
6. LTR_STRUC: a novel search and identification program for LTR retrotransposons. McCarthy EM; McDonald JF Bioinformatics; 2003 Feb; 19(3):362-7. PubMed ID: 12584121 [TBL] [Abstract][Full Text] [Related]
7. [Identification and analysis methods of plant LTR retrotransposon sequences]. Hou XG; Zhang X; Guo DL Yi Chuan; 2012 Nov; 34(11):1491-500. PubMed ID: 23208147 [TBL] [Abstract][Full Text] [Related]
8. The non-LTR retrotransposons in Ciona intestinalis: new insights into the evolution of chordate genomes. Permanyer J; Gonzàlez-Duarte R; Albalat R Genome Biol; 2003; 4(11):R73. PubMed ID: 14611659 [TBL] [Abstract][Full Text] [Related]
9. Retrotransposons in Betula nana, and interspecific relationships in the Betuloideae, based on inter-retrotransposon amplified polymorphism (IRAP) markers. Roy NS; Lee SI; Nkongolo K; Kim NS Genes Genomics; 2018 May; 40(5):511-519. PubMed ID: 29892962 [TBL] [Abstract][Full Text] [Related]
10. Long terminal repeat retrotransposons of Oryza sativa. McCarthy EM; Liu J; Lizhi G; McDonald JF Genome Biol; 2002 Sep; 3(10):RESEARCH0053. PubMed ID: 12372141 [TBL] [Abstract][Full Text] [Related]
11. Using RepeatMasker to identify repetitive elements in genomic sequences. Chen N Curr Protoc Bioinformatics; 2004 May; Chapter 4():Unit 4.10. PubMed ID: 18428725 [TBL] [Abstract][Full Text] [Related]
12. Pattern locator: a new tool for finding local sequence patterns in genomic DNA sequences. Mrázek J; Xie S Bioinformatics; 2006 Dec; 22(24):3099-100. PubMed ID: 17095514 [TBL] [Abstract][Full Text] [Related]
13. Evolutionary history of Oryza sativa LTR retrotransposons: a preliminary survey of the rice genome sequences. Gao L; McCarthy EM; Ganko EW; McDonald JF BMC Genomics; 2004 Mar; 5(1):18. PubMed ID: 15040813 [TBL] [Abstract][Full Text] [Related]
14. i-ADHoRe 2.0: an improved tool to detect degenerated genomic homology using genomic profiles. Simillion C; Janssens K; Sterck L; Van de Peer Y Bioinformatics; 2008 Jan; 24(1):127-8. PubMed ID: 17947255 [TBL] [Abstract][Full Text] [Related]
15. Terminal-repeat retrotransposons with GAG domain in plant genomes: a new testimony on the complex world of transposable elements. Chaparro C; Gayraud T; de Souza RF; Domingues DS; Akaffou S; Laforga Vanzela AL; Kochko Ad; Rigoreau M; Crouzillat D; Hamon S; Hamon P; Guyot R Genome Biol Evol; 2015 Jan; 7(2):493-504. PubMed ID: 25573958 [TBL] [Abstract][Full Text] [Related]
16. Subfamilies of CR1 non-LTR retrotransposons have different 5'UTR sequences but are otherwise conserved. Haas NB; Grabowski JM; North J; Moran JV; Kazazian HH; Burch JB Gene; 2001 Mar; 265(1-2):175-83. PubMed ID: 11255020 [TBL] [Abstract][Full Text] [Related]
17. Mollusc genomes reveal variability in patterns of LTR-retrotransposons dynamics. Thomas-Bulle C; Piednoël M; Donnart T; Filée J; Jollivet D; Bonnivard É BMC Genomics; 2018 Nov; 19(1):821. PubMed ID: 30442098 [TBL] [Abstract][Full Text] [Related]
18. CsRn1, a novel active retrotransposon in a parasitic trematode, Clonorchis sinensis, discloses a new phylogenetic clade of Ty3/gypsy-like LTR retrotransposons. Bae YA; Moon SY; Kong Y; Cho SY; Rhyu MG Mol Biol Evol; 2001 Aug; 18(8):1474-83. PubMed ID: 11470838 [TBL] [Abstract][Full Text] [Related]
19. Decomposition of overlapping patterns by cumulative local cross-correlation. Kogan SB J Bioinform Comput Biol; 2006 Apr; 4(2):571-87. PubMed ID: 16819803 [TBL] [Abstract][Full Text] [Related]
20. GeneSyn: a tool for detecting conserved gene order across genomes. Pavesi G; Mauri G; Iannelli F; Gissi C; Pesole G Bioinformatics; 2004 Jun; 20(9):1472-4. PubMed ID: 14976031 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]