These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 16447983)

  • 21. Which sets of elementary flux modes form thermodynamically feasible flux distributions?
    Gerstl MP; Jungreuthmayer C; Müller S; Zanghellini J
    FEBS J; 2016 May; 283(9):1782-94. PubMed ID: 26940826
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ab initio prediction of thermodynamically feasible reaction directions from biochemical network stoichiometry.
    Yang F; Qian H; Beard DA
    Metab Eng; 2005 Jul; 7(4):251-9. PubMed ID: 16140239
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The application of flux balance analysis in systems biology.
    Gianchandani EP; Chavali AK; Papin JA
    Wiley Interdiscip Rev Syst Biol Med; 2010; 2(3):372-382. PubMed ID: 20836035
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The fractional contributions of elementary modes to the metabolism of Escherichia coli and their estimation from reaction entropies.
    Wlaschin AP; Trinh CT; Carlson R; Srienc F
    Metab Eng; 2006 Jul; 8(4):338-52. PubMed ID: 16581276
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Model of central and trimethylammonium metabolism for optimizing L-carnitine production by E. coli.
    Sevilla A; Schmid JW; Mauch K; Iborra JL; Reuss M; Cánovas M
    Metab Eng; 2005; 7(5-6):401-25. PubMed ID: 16098782
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Thermodynamic constraints for biochemical networks.
    Beard DA; Babson E; Curtis E; Qian H
    J Theor Biol; 2004 Jun; 228(3):327-33. PubMed ID: 15135031
    [TBL] [Abstract][Full Text] [Related]  

  • 27. System-level insights into yeast metabolism by thermodynamic analysis of elementary flux modes.
    Jol SJ; Kümmel A; Terzer M; Stelling J; Heinemann M
    PLoS Comput Biol; 2012; 8(3):e1002415. PubMed ID: 22416224
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Descriptive and predictive applications of constraint-based metabolic models.
    Reed JL
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():5460-3. PubMed ID: 19964681
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Subgraph ensembles and motif discovery using an alternative heuristic for graph isomorphism.
    Baskerville K; Paczuski M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Nov; 74(5 Pt 1):051903. PubMed ID: 17279935
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Genome-scale in silico models of E. coli have multiple equivalent phenotypic states: assessment of correlated reaction subsets that comprise network states.
    Reed JL; Palsson BØ
    Genome Res; 2004 Sep; 14(9):1797-805. PubMed ID: 15342562
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Irreversible thermodynamics of open chemical networks. I. Emergent cycles and broken conservation laws.
    Polettini M; Esposito M
    J Chem Phys; 2014 Jul; 141(2):024117. PubMed ID: 25028009
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enumerating constrained elementary flux vectors of metabolic networks.
    Urbanczik R
    IET Syst Biol; 2007 Sep; 1(5):274-9. PubMed ID: 17907675
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Gene expression analysis on biochemical networks using the Potts spin model.
    König R; Eils R
    Bioinformatics; 2004 Jul; 20(10):1500-5. PubMed ID: 15231542
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Toward Synthetic Biology Strategies for Adipic Acid Production: An in Silico Tool for Combined Thermodynamics and Stoichiometric Analysis of Metabolic Networks.
    Averesch NJH; Martínez VS; Nielsen LK; Krömer JO
    ACS Synth Biol; 2018 Feb; 7(2):490-509. PubMed ID: 29237121
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Thermodynamic Approaches in Flux Analysis.
    Peres S; Fromion V
    Methods Mol Biol; 2020; 2088():359-367. PubMed ID: 31893383
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Thermodynamically feasible kinetic models of reaction networks.
    Ederer M; Gilles ED
    Biophys J; 2007 Mar; 92(6):1846-57. PubMed ID: 17208985
    [TBL] [Abstract][Full Text] [Related]  

  • 37. OptMDFpathway: Identification of metabolic pathways with maximal thermodynamic driving force and its application for analyzing the endogenous CO2 fixation potential of Escherichia coli.
    Hädicke O; von Kamp A; Aydogan T; Klamt S
    PLoS Comput Biol; 2018 Sep; 14(9):e1006492. PubMed ID: 30248096
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fundamental Escherichia coli biochemical pathways for biomass and energy production: creation of overall flux states.
    Carlson R; Srienc F
    Biotechnol Bioeng; 2004 Apr; 86(2):149-62. PubMed ID: 15052634
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The YfiD protein contributes to the pyruvate formate-lyase flux in an Escherichia coli arcA mutant strain.
    Zhu J; Shalel-Levanon S; Bennett G; San KY
    Biotechnol Bioeng; 2007 May; 97(1):138-43. PubMed ID: 17013945
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information.
    Feist AM; Henry CS; Reed JL; Krummenacker M; Joyce AR; Karp PD; Broadbelt LJ; Hatzimanikatis V; Palsson BØ
    Mol Syst Biol; 2007; 3():121. PubMed ID: 17593909
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.