These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 16447983)

  • 41. Detecting the Significant Flux Backbone of Escherichia coli metabolism.
    Güell O; Sagués F; Serrano MÁ
    FEBS Lett; 2017 May; 591(10):1437-1451. PubMed ID: 28391640
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Fast thermodynamically constrained flux variability analysis.
    Müller AC; Bockmayr A
    Bioinformatics; 2013 Apr; 29(7):903-9. PubMed ID: 23390138
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Metabolic flux analysis of Escherichia coli K12 grown on 13C-labeled acetate and glucose using GC-MS and powerful flux calculation method.
    Zhao J; Shimizu K
    J Biotechnol; 2003 Mar; 101(2):101-17. PubMed ID: 12568740
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Hierarchical organization of fluxes in Escherichia coli metabolic network: using flux coupling analysis for understanding the physiological properties of metabolic genes.
    Hosseini Z; Marashi SA
    Gene; 2015 May; 561(2):199-208. PubMed ID: 25688882
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Generalized hill function method for modeling molecular processes.
    Likhoshvai V; Ratushny A
    J Bioinform Comput Biol; 2007 Apr; 5(2B):521-31. PubMed ID: 17636859
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Impact of thermodynamic principles in systems biology.
    Heijnen JJ
    Adv Biochem Eng Biotechnol; 2010; 121():139-62. PubMed ID: 20490971
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Thermodynamic analysis of computed pathways integrated into the metabolic networks of E. coli and Synechocystis reveals contrasting expansion potential.
    Asplund-Samuelsson J; Janasch M; Hudson EP
    Metab Eng; 2018 Jan; 45():223-236. PubMed ID: 29278749
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Genome-scale estimate of the metabolic turnover of E. coli from the energy balance analysis.
    De Martino D
    Phys Biol; 2016 Jan; 13(1):016003. PubMed ID: 26824410
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A new class of highly efficient exact stochastic simulation algorithms for chemical reaction networks.
    Ramaswamy R; González-Segredo N; Sbalzarini IF
    J Chem Phys; 2009 Jun; 130(24):244104. PubMed ID: 19566139
    [TBL] [Abstract][Full Text] [Related]  

  • 50. An elementary metabolite unit (EMU) based method of isotopically nonstationary flux analysis.
    Young JD; Walther JL; Antoniewicz MR; Yoo H; Stephanopoulos G
    Biotechnol Bioeng; 2008 Feb; 99(3):686-99. PubMed ID: 17787013
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Complementary identification of multiple flux distributions and multiple metabolic pathways.
    Lee DY; Fan LT; Park S; Lee SY; Shafie S; Bertók B; Friedler F
    Metab Eng; 2005 May; 7(3):182-200. PubMed ID: 15885617
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Robustness analysis and tuning of synthetic gene networks.
    Batt G; Yordanov B; Weiss R; Belta C
    Bioinformatics; 2007 Sep; 23(18):2415-22. PubMed ID: 17660209
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Optimization of bioreactor using metabolic control analysis approach.
    Konde KS; Modak JM
    Biotechnol Prog; 2007; 23(2):370-80. PubMed ID: 17330959
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The principle of flux minimization and its application to estimate stationary fluxes in metabolic networks.
    Holzhütter HG
    Eur J Biochem; 2004 Jul; 271(14):2905-22. PubMed ID: 15233787
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Development of thermodynamic optimum searching (TOS) to improve the prediction accuracy of flux balance analysis.
    Zhu Y; Song J; Xu Z; Sun J; Zhang Y; Li Y; Ma Y
    Biotechnol Bioeng; 2013 Mar; 110(3):914-23. PubMed ID: 23042478
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Thermodynamic Constraints Improve Metabolic Networks.
    Krumholz EW; Libourel IGL
    Biophys J; 2017 Aug; 113(3):679-689. PubMed ID: 28793222
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Reverse engineering: the architecture of biological networks.
    Khammash M
    Biotechniques; 2008 Mar; 44(3):323-9. PubMed ID: 18361784
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Engineering the Escherichia coli fermentative metabolism.
    Orencio-Trejo M; Utrilla J; Fernández-Sandoval MT; Huerta-Beristain G; Gosset G; Martinez A
    Adv Biochem Eng Biotechnol; 2010; 121():71-107. PubMed ID: 20182928
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Spatial stochastic modelling of the phosphoenolpyruvate-dependent phosphotransferase (PTS) pathway in Escherichia coli.
    Rodríguez JV; Kaandorp JA; Dobrzyński M; Blom JG
    Bioinformatics; 2006 Aug; 22(15):1895-901. PubMed ID: 16731694
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Inference of gene networks from temporal gene expression profiles.
    Bansal M; di Bernardo D
    IET Syst Biol; 2007 Sep; 1(5):306-12. PubMed ID: 17907680
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.