BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 16448028)

  • 1. Dynamic algorithm for inferring qualitative models of gene regulatory networks.
    Yun Z; Keong KC
    Proc IEEE Comput Syst Bioinform Conf; 2004; ():353-62. PubMed ID: 16448028
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic algorithm for inferring qualitative models of Gene Regulatory Networks.
    Zheng Y; Kwoh CK
    Int J Data Min Bioinform; 2006; 1(2):111-37. PubMed ID: 18399066
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bayesian Orthogonal Least Squares (BOLS) algorithm for reverse engineering of gene regulatory networks.
    Kim CS
    BMC Bioinformatics; 2007 Jul; 8():251. PubMed ID: 17626641
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new dynamic Bayesian network (DBN) approach for identifying gene regulatory networks from time course microarray data.
    Zou M; Conzen SD
    Bioinformatics; 2005 Jan; 21(1):71-9. PubMed ID: 15308537
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Minreg: inferring an active regulator set.
    Pe'er D; Regev A; Tanay A
    Bioinformatics; 2002; 18 Suppl 1():S258-67. PubMed ID: 12169555
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inferring genetic regulatory logic from expression data.
    Bulashevska S; Eils R
    Bioinformatics; 2005 Jun; 21(11):2706-13. PubMed ID: 15784747
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new framework for identifying combinatorial regulation of transcription factors: a case study of the yeast cell cycle.
    Wang J
    J Biomed Inform; 2007 Dec; 40(6):707-25. PubMed ID: 17418646
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimating time-dependent gene networks from time series microarray data by dynamic linear models with Markov switching.
    Yoshida R; Imoto S; Higuchi T
    Proc IEEE Comput Syst Bioinform Conf; 2005; ():289-98. PubMed ID: 16447986
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inferring gene regulatory networks from time series data using the minimum description length principle.
    Zhao W; Serpedin E; Dougherty ER
    Bioinformatics; 2006 Sep; 22(17):2129-35. PubMed ID: 16845143
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Discovering molecular pathways from protein interaction and gene expression data.
    Segal E; Wang H; Koller D
    Bioinformatics; 2003; 19 Suppl 1():i264-71. PubMed ID: 12855469
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ensemble learning of genetic networks from time-series expression data.
    Nam D; Yoon SH; Kim JF
    Bioinformatics; 2007 Dec; 23(23):3225-31. PubMed ID: 17977884
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Constructing and analyzing a large-scale gene-to-gene regulatory network--lasso-constrained inference and biological validation.
    Gustafsson M; Hörnquist M; Lombardi A
    IEEE/ACM Trans Comput Biol Bioinform; 2005; 2(3):254-61. PubMed ID: 17044188
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detecting biological associations between genes based on the theory of phase synchronization.
    Kim CS; Riikonen P; Salakoski T
    Biosystems; 2008 May; 92(2):99-113. PubMed ID: 18289772
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reconstructing genetic networks from time ordered gene expression data using Bayesian method with global search algorithm.
    Wang SC
    J Bioinform Comput Biol; 2004 Sep; 2(3):441-58. PubMed ID: 15359420
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unraveling condition specific gene transcriptional regulatory networks in Saccharomyces cerevisiae.
    Kim H; Hu W; Kluger Y
    BMC Bioinformatics; 2006 Mar; 7():165. PubMed ID: 16551355
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative characterization of the transcriptional regulatory network in the yeast cell cycle.
    Chen HC; Lee HC; Lin TY; Li WH; Chen BS
    Bioinformatics; 2004 Aug; 20(12):1914-27. PubMed ID: 15044243
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gene function prediction using labeled and unlabeled data.
    Zhao XM; Wang Y; Chen L; Aihara K
    BMC Bioinformatics; 2008 Jan; 9():57. PubMed ID: 18221567
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Function constrains network architecture and dynamics: a case study on the yeast cell cycle Boolean network.
    Lau KY; Ganguli S; Tang C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 May; 75(5 Pt 1):051907. PubMed ID: 17677098
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An efficient data assimilation schema for restoration and extension of gene regulatory networks using time-course observation data.
    Hasegawa T; Mori T; Yamaguchi R; Imoto S; Miyano S; Akutsu T
    J Comput Biol; 2014 Nov; 21(11):785-98. PubMed ID: 25244077
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Learning regulatory programs that accurately predict differential expression with MEDUSA.
    Kundaje A; Lianoglou S; Li X; Quigley D; Arias M; Wiggins CH; Zhang L; Leslie C
    Ann N Y Acad Sci; 2007 Dec; 1115():178-202. PubMed ID: 17934055
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.