These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

510 related articles for article (PubMed ID: 16448052)

  • 61. Chiral separation of FITC-labeled amino acids with gel electrochromatography using a polydimethylsiloxane microfluidic device.
    Zeng HL; Li H; Wang X; Lin JM
    J Capill Electrophor Microchip Technol; 2007; 10(1-2):19-24. PubMed ID: 17685238
    [TBL] [Abstract][Full Text] [Related]  

  • 62. DNA extraction using a tetramethyl orthosilicate-grafted photopolymerized monolithic solid phase.
    Wen J; Guillo C; Ferrance JP; Landers JP
    Anal Chem; 2006 Mar; 78(5):1673-81. PubMed ID: 16503622
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Solid phase nucleic acid extraction technique in a microfluidic chip using a novel non-chaotropic agent: dimethyl adipimidate.
    Shin Y; Perera AP; Wong CC; Park MK
    Lab Chip; 2014 Jan; 14(2):359-68. PubMed ID: 24263404
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Novel one-pot route to monodisperse thermosensitive hollow microcapsules in a microfluidic system.
    Choi CH; Jung JH; Kim DW; Chung YM; Lee CS
    Lab Chip; 2008 Sep; 8(9):1544-51. PubMed ID: 18818811
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Microfluidic chip accomplishing self-fluid replacement using only capillary force and its bioanalytical application.
    Chung KH; Hong JW; Lee DS; Yoon HC
    Anal Chim Acta; 2007 Feb; 585(1):1-10. PubMed ID: 17386640
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Preconcentration of proteins on microfluidic devices using porous silica membranes.
    Foote RS; Khandurina J; Jacobson SC; Ramsey JM
    Anal Chem; 2005 Jan; 77(1):57-63. PubMed ID: 15623278
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Nucleic acid extraction techniques and application to the microchip.
    Price CW; Leslie DC; Landers JP
    Lab Chip; 2009 Sep; 9(17):2484-94. PubMed ID: 19680574
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Preparation and characterization of monolithic column by grafting pH-responsive polymer.
    Wei X; Qi L; Yang G; Wang F
    Talanta; 2009 Aug; 79(3):739-45. PubMed ID: 19576439
    [TBL] [Abstract][Full Text] [Related]  

  • 69. A plastic microchip for nucleic acid purification.
    Liu Y; Cady NC; Batt CA
    Biomed Microdevices; 2007 Oct; 9(5):769-76. PubMed ID: 17530410
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Volume reduction solid phase extraction of DNA from dilute, large-volume biological samples.
    Reedy CR; Bienvenue JM; Coletta L; Strachan BC; Bhatri N; Greenspoon S; Landers JP
    Forensic Sci Int Genet; 2010 Apr; 4(3):206-12. PubMed ID: 20215033
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Fabrication of lab-on chip platforms by hot embossing and photo patterning.
    Maurya DK; Ng WY; Mahabadi KA; Liang YN; Rodríguez I
    Biotechnol J; 2007 Nov; 2(11):1381-8. PubMed ID: 17886237
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Fabrication of an octadecylated silica monolith inside a glass microchip for protein enrichment.
    Alzahrani E; Welham K
    Analyst; 2012 Oct; 137(20):4751-9. PubMed ID: 22902529
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Analytical performance of polymer-based microfluidic devices fabricated by computer numerical controlled machining.
    Mecomber JS; Stalcup AM; Hurd D; Halsall HB; Heineman WR; Seliskar CJ; Wehmeyer KR; Limbach PA
    Anal Chem; 2006 Feb; 78(3):936-41. PubMed ID: 16448071
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Robust monolithic silica-based on-chip electro-osmotic micro-pump.
    Nie FQ; Macka M; Barron L; Connolly D; Kent N; Paull B
    Analyst; 2007 May; 132(5):417-24. PubMed ID: 17471387
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Isoelectric focusing in cyclic olefin copolymer microfluidic channels coated by polyacrylamide using a UV photografting method.
    Li C; Yang Y; Craighead HG; Lee KH
    Electrophoresis; 2005 May; 26(9):1800-6. PubMed ID: 15800962
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Biomimetic formation of silica thin films by surface-initiated polymerization of 2-(dimethylamino)ethyl methacrylate and silicic acid.
    Kim DJ; Lee KB; Chi YS; Kim WJ; Paik HJ; Choi IS
    Langmuir; 2004 Sep; 20(19):7904-6. PubMed ID: 15350051
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Low temperature bonding of PMMA and COC microfluidic substrates using UV/ozone surface treatment.
    Tsao CW; Hromada L; Liu J; Kumar P; DeVoe DL
    Lab Chip; 2007 Apr; 7(4):499-505. PubMed ID: 17389967
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Development of an acrylate monolith in a cyclo-olefin copolymer microfluidic device for chip electrochromatography separation.
    Faure K; Albert M; Dugas V; Crétier G; Ferrigno R; Morin P; Rocca JL
    Electrophoresis; 2008 Dec; 29(24):4948-55. PubMed ID: 19130574
    [TBL] [Abstract][Full Text] [Related]  

  • 79. A one-step protocol for the chemical derivatisation of glass microfluidic devices.
    Wootton RC; deMello AJ
    Lab Chip; 2006 Apr; 6(4):471-3. PubMed ID: 16572208
    [TBL] [Abstract][Full Text] [Related]  

  • 80. A microfluidic liquid phase nucleic acid purification chip to selectively isolate DNA or RNA from low copy/single bacterial cells in minute sample volume followed by direct on-chip quantitative PCR assay.
    Zhang R; Gong HQ; Zeng X; Lou C; Sze C
    Anal Chem; 2013 Feb; 85(3):1484-91. PubMed ID: 23272769
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 26.