These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 16448099)

  • 1. Highly porous fibers by electrospinning into a cryogenic liquid.
    McCann JT; Marquez M; Xia Y
    J Am Chem Soc; 2006 Feb; 128(5):1436-7. PubMed ID: 16448099
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Superhydrophobic and oleophobic fibers by coaxial electrospinning.
    Han D; Steckl AJ
    Langmuir; 2009 Aug; 25(16):9454-62. PubMed ID: 19374456
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanoporous structured submicrometer carbon fibers prepared via solution electrospinning of polymer blends.
    Peng M; Li D; Shen L; Chen Y; Zheng Q; Wang H
    Langmuir; 2006 Oct; 22(22):9368-74. PubMed ID: 17042555
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Robust superhydrophobic mats based on electrospun crystalline nanofibers combined with a silane precursor.
    Park SH; Lee SM; Lim HS; Han JT; Lee DR; Shin HS; Jeong Y; Kim J; Cho JH
    ACS Appl Mater Interfaces; 2010 Mar; 2(3):658-62. PubMed ID: 20356265
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication of drug-loaded electrospun aligned fibrous threads for suture applications.
    He CL; Huang ZM; Han XJ
    J Biomed Mater Res A; 2009 Apr; 89(1):80-95. PubMed ID: 18428982
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coaxially electrospun PVDF-Teflon AF and Teflon AF-PVDF core-sheath nanofiber mats with superhydrophobic properties.
    Muthiah P; Hsu SH; Sigmund W
    Langmuir; 2010 Aug; 26(15):12483-7. PubMed ID: 20614895
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of protein adsorption on functionalized electrospun fibers.
    Grafahrend D; Calvet JL; Klinkhammer K; Salber J; Dalton PD; Möller M; Klee D
    Biotechnol Bioeng; 2008 Oct; 101(3):609-21. PubMed ID: 18461606
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Desorption-limited mechanism of release from polymer nanofibers.
    Srikar R; Yarin AL; Megaridis CM; Bazilevsky AV; Kelley E
    Langmuir; 2008 Feb; 24(3):965-74. PubMed ID: 18076196
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controlled protein release from electrospun biodegradable fiber mesh composed of poly(epsilon-caprolactone) and poly(ethylene oxide).
    Kim TG; Lee DS; Park TG
    Int J Pharm; 2007 Jun; 338(1-2):276-83. PubMed ID: 17321084
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrospun poly(styrene-block-dimethylsiloxane) block copolymer fibers exhibiting superhydrophobicity.
    Ma M; Hill RM; Lowery JL; Fridrikh SV; Rutledge GC
    Langmuir; 2005 Jun; 21(12):5549-54. PubMed ID: 15924488
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrospinning induced ferroelectricity in poly(vinylidene fluoride) fibers.
    Baji A; Mai YW; Li Q; Liu Y
    Nanoscale; 2011 Aug; 3(8):3068-71. PubMed ID: 21713284
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Freely switchable super-hydrophobicity and super-hydrophilicity of sponge-like poly(vinylidene fluoride) porous fibers for highly efficient oil/water separation.
    Liao XL; Sun DX; Cao S; Zhang N; Huang T; Lei YZ; Wang Y
    J Hazard Mater; 2021 Aug; 416():125926. PubMed ID: 34492858
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microscale fish bowls: a new class of latex particles with hollow interiors and engineered porous structures in their surfaces.
    Jeong U; Im SH; Camargo PH; Kim JH; Xia Y
    Langmuir; 2007 Oct; 23(22):10968-75. PubMed ID: 17910489
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Studies on the morphology and structure of electrospun poly (3-hydroxybutyrate)/soya protein isolates fibers].
    Li M; Li Z
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2007 Jun; 24(3):607-11. PubMed ID: 17713272
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation of porous poly(L-lactic acid) honeycomb monolith structure by phase separation and unidirectional freezing.
    Kim JW; Taki K; Nagamine S; Ohshima M
    Langmuir; 2009 May; 25(9):5304-12. PubMed ID: 19290649
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fiber diameter and texture of electrospun PEOT/PBT scaffolds influence human mesenchymal stem cell proliferation and morphology, and the release of incorporated compounds.
    Moroni L; Licht R; de Boer J; de Wijn JR; van Blitterswijk CA
    Biomaterials; 2006 Oct; 27(28):4911-22. PubMed ID: 16762409
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The use of thermal treatments to enhance the mechanical properties of electrospun poly(epsilon-caprolactone) scaffolds.
    Lee SJ; Oh SH; Liu J; Soker S; Atala A; Yoo JJ
    Biomaterials; 2008 Apr; 29(10):1422-30. PubMed ID: 18096219
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coaxial electrospinning of (fluorescein isothiocyanate-conjugated bovine serum albumin)-encapsulated poly(epsilon-caprolactone) nanofibers for sustained release.
    Zhang YZ; Wang X; Feng Y; Li J; Lim CT; Ramakrishna S
    Biomacromolecules; 2006 Apr; 7(4):1049-57. PubMed ID: 16602720
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure formation and characterization of injectable drug loaded biodegradable devices: in situ implants versus in situ microparticles.
    Kranz H; Bodmeier R
    Eur J Pharm Sci; 2008 Jul; 34(2-3):164-72. PubMed ID: 18501569
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Porous biodegradable scaffold: predetermined porosity by dissolution of poly(ester-anhydride) fibers from polyester matrix.
    Rich J; Korhonen H; Hakala R; Korventausta J; Elomaa L; Seppälä J
    Macromol Biosci; 2009 Jul; 9(7):654-60. PubMed ID: 19165824
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.