These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 1644810)

  • 1. The importance of aspartate 327 for catalysis and zinc binding in Escherichia coli alkaline phosphatase.
    Xu X; Kantrowitz ER
    J Biol Chem; 1992 Aug; 267(23):16244-51. PubMed ID: 1644810
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probing the role of histidine-372 in zinc binding and the catalytic mechanism of Escherichia coli alkaline phosphatase by site-specific mutagenesis.
    Xu X; Qin XQ; Kantrowitz ER
    Biochemistry; 1994 Mar; 33(8):2279-84. PubMed ID: 8117685
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced catalysis by active-site mutagenesis at aspartic acid 153 in Escherichia coli alkaline phosphatase.
    Matlin AR; Kendall DA; Carano KS; Banzon JA; Klecka SB; Solomon NM
    Biochemistry; 1992 Sep; 31(35):8196-200. PubMed ID: 1525159
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A water-mediated salt link in the catalytic site of Escherichia coli alkaline phosphatase may influence activity.
    Xu X; Kantrowitz ER
    Biochemistry; 1991 Aug; 30(31):7789-96. PubMed ID: 1907846
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Binding of magnesium in a mutant Escherichia coli alkaline phosphatase changes the rate-determining step in the reaction mechanism.
    Xu X; Kantrowitz ER
    Biochemistry; 1993 Oct; 32(40):10683-91. PubMed ID: 8104481
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Magnesium in the active site of Escherichia coli alkaline phosphatase is important for both structural stabilization and catalysis.
    Janeway CM; Xu X; Murphy JE; Chaidaroglou A; Kantrowitz ER
    Biochemistry; 1993 Feb; 32(6):1601-9. PubMed ID: 8431439
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetics and crystal structure of a mutant Escherichia coli alkaline phosphatase (Asp-369-->Asn): a mechanism involving one zinc per active site.
    Tibbitts TT; Xu X; Kantrowitz ER
    Protein Sci; 1994 Nov; 3(11):2005-14. PubMed ID: 7703848
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mutations at histidine 412 alter zinc binding and eliminate transferase activity in Escherichia coli alkaline phosphatase.
    Ma L; Kantrowitz ER
    J Biol Chem; 1994 Dec; 269(50):31614-9. PubMed ID: 7989332
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetic and X-ray structural studies of a mutant Escherichia coli alkaline phosphatase (His-412-->Gln) at one of the zinc binding sites.
    Ma L; Kantrowitz ER
    Biochemistry; 1996 Feb; 35(7):2394-402. PubMed ID: 8652582
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure and mechanism of alkaline phosphatase.
    Coleman JE
    Annu Rev Biophys Biomol Struct; 1992; 21():441-83. PubMed ID: 1525473
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Arginine 54 in the active site of Escherichia coli aspartate transcarbamoylase is critical for catalysis: a site-specific mutagenesis, NMR, and X-ray crystallographic study.
    Stebbins JW; Robertson DE; Roberts MF; Stevens RC; Lipscomb WN; Kantrowitz ER
    Protein Sci; 1992 Nov; 1(11):1435-46. PubMed ID: 1303763
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of a catalytic zinc binding site in Escherichia coli L-threonine dehydrogenase by site-directed mutagenesis of cysteine-38.
    Johnson AR; Chen YW; Dekker EE
    Arch Biochem Biophys; 1998 Oct; 358(2):211-21. PubMed ID: 9784233
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glutamic acid residues as metal ligands in the active site of Escherichia coli alkaline phosphatase.
    Wojciechowski CL; Kantrowitz ER
    Biochim Biophys Acta; 2003 Jun; 1649(1):68-73. PubMed ID: 12818192
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Site-directed mutagenesis of the active site glutamate in human matrilysin: investigation of its role in catalysis.
    Cha J; Auld DS
    Biochemistry; 1997 Dec; 36(50):16019-24. PubMed ID: 9398337
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetic and structural consequences of replacing the aspartate bridge by asparagine in the catalytic metal triad of Escherichia coli alkaline phosphatase.
    Tibbitts TT; Murphy JE; Kantrowitz ER
    J Mol Biol; 1996 Apr; 257(3):700-15. PubMed ID: 8648634
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alteration of aspartate 101 in the active site of Escherichia coli alkaline phosphatase enhances the catalytic activity.
    Chaidaroglou A; Kantrowitz ER
    Protein Eng; 1989 Nov; 3(2):127-32. PubMed ID: 2687845
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Altering of the metal specificity of Escherichia coli alkaline phosphatase.
    Wojciechowski CL; Kantrowitz ER
    J Biol Chem; 2002 Dec; 277(52):50476-81. PubMed ID: 12399456
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rate-determining step of Escherichia coli alkaline phosphatase altered by the removal of a positive charge at the active center.
    Sun L; Martin DC; Kantrowitz ER
    Biochemistry; 1999 Mar; 38(9):2842-8. PubMed ID: 10052956
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Escherichia coli alkaline phosphatase: X-ray structural studies of a mutant enzyme (His-412-->Asn) at one of the catalytically important zinc binding sites.
    Ma L; Tibbitts TT; Kantrowitz ER
    Protein Sci; 1995 Aug; 4(8):1498-506. PubMed ID: 8520475
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of catalytic bases in the active site of Escherichia coli methylglyoxal synthase: cloning, expression, and functional characterization of conserved aspartic acid residues.
    Saadat D; Harrison DH
    Biochemistry; 1998 Jul; 37(28):10074-86. PubMed ID: 9665712
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.