BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 1644810)

  • 1. The importance of aspartate 327 for catalysis and zinc binding in Escherichia coli alkaline phosphatase.
    Xu X; Kantrowitz ER
    J Biol Chem; 1992 Aug; 267(23):16244-51. PubMed ID: 1644810
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probing the role of histidine-372 in zinc binding and the catalytic mechanism of Escherichia coli alkaline phosphatase by site-specific mutagenesis.
    Xu X; Qin XQ; Kantrowitz ER
    Biochemistry; 1994 Mar; 33(8):2279-84. PubMed ID: 8117685
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced catalysis by active-site mutagenesis at aspartic acid 153 in Escherichia coli alkaline phosphatase.
    Matlin AR; Kendall DA; Carano KS; Banzon JA; Klecka SB; Solomon NM
    Biochemistry; 1992 Sep; 31(35):8196-200. PubMed ID: 1525159
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A water-mediated salt link in the catalytic site of Escherichia coli alkaline phosphatase may influence activity.
    Xu X; Kantrowitz ER
    Biochemistry; 1991 Aug; 30(31):7789-96. PubMed ID: 1907846
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Binding of magnesium in a mutant Escherichia coli alkaline phosphatase changes the rate-determining step in the reaction mechanism.
    Xu X; Kantrowitz ER
    Biochemistry; 1993 Oct; 32(40):10683-91. PubMed ID: 8104481
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Magnesium in the active site of Escherichia coli alkaline phosphatase is important for both structural stabilization and catalysis.
    Janeway CM; Xu X; Murphy JE; Chaidaroglou A; Kantrowitz ER
    Biochemistry; 1993 Feb; 32(6):1601-9. PubMed ID: 8431439
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetics and crystal structure of a mutant Escherichia coli alkaline phosphatase (Asp-369-->Asn): a mechanism involving one zinc per active site.
    Tibbitts TT; Xu X; Kantrowitz ER
    Protein Sci; 1994 Nov; 3(11):2005-14. PubMed ID: 7703848
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mutations at histidine 412 alter zinc binding and eliminate transferase activity in Escherichia coli alkaline phosphatase.
    Ma L; Kantrowitz ER
    J Biol Chem; 1994 Dec; 269(50):31614-9. PubMed ID: 7989332
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetic and X-ray structural studies of a mutant Escherichia coli alkaline phosphatase (His-412-->Gln) at one of the zinc binding sites.
    Ma L; Kantrowitz ER
    Biochemistry; 1996 Feb; 35(7):2394-402. PubMed ID: 8652582
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure and mechanism of alkaline phosphatase.
    Coleman JE
    Annu Rev Biophys Biomol Struct; 1992; 21():441-83. PubMed ID: 1525473
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Arginine 54 in the active site of Escherichia coli aspartate transcarbamoylase is critical for catalysis: a site-specific mutagenesis, NMR, and X-ray crystallographic study.
    Stebbins JW; Robertson DE; Roberts MF; Stevens RC; Lipscomb WN; Kantrowitz ER
    Protein Sci; 1992 Nov; 1(11):1435-46. PubMed ID: 1303763
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of a catalytic zinc binding site in Escherichia coli L-threonine dehydrogenase by site-directed mutagenesis of cysteine-38.
    Johnson AR; Chen YW; Dekker EE
    Arch Biochem Biophys; 1998 Oct; 358(2):211-21. PubMed ID: 9784233
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glutamic acid residues as metal ligands in the active site of Escherichia coli alkaline phosphatase.
    Wojciechowski CL; Kantrowitz ER
    Biochim Biophys Acta; 2003 Jun; 1649(1):68-73. PubMed ID: 12818192
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Site-directed mutagenesis of the active site glutamate in human matrilysin: investigation of its role in catalysis.
    Cha J; Auld DS
    Biochemistry; 1997 Dec; 36(50):16019-24. PubMed ID: 9398337
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetic and structural consequences of replacing the aspartate bridge by asparagine in the catalytic metal triad of Escherichia coli alkaline phosphatase.
    Tibbitts TT; Murphy JE; Kantrowitz ER
    J Mol Biol; 1996 Apr; 257(3):700-15. PubMed ID: 8648634
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alteration of aspartate 101 in the active site of Escherichia coli alkaline phosphatase enhances the catalytic activity.
    Chaidaroglou A; Kantrowitz ER
    Protein Eng; 1989 Nov; 3(2):127-32. PubMed ID: 2687845
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Altering of the metal specificity of Escherichia coli alkaline phosphatase.
    Wojciechowski CL; Kantrowitz ER
    J Biol Chem; 2002 Dec; 277(52):50476-81. PubMed ID: 12399456
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rate-determining step of Escherichia coli alkaline phosphatase altered by the removal of a positive charge at the active center.
    Sun L; Martin DC; Kantrowitz ER
    Biochemistry; 1999 Mar; 38(9):2842-8. PubMed ID: 10052956
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Escherichia coli alkaline phosphatase: X-ray structural studies of a mutant enzyme (His-412-->Asn) at one of the catalytically important zinc binding sites.
    Ma L; Tibbitts TT; Kantrowitz ER
    Protein Sci; 1995 Aug; 4(8):1498-506. PubMed ID: 8520475
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of catalytic bases in the active site of Escherichia coli methylglyoxal synthase: cloning, expression, and functional characterization of conserved aspartic acid residues.
    Saadat D; Harrison DH
    Biochemistry; 1998 Jul; 37(28):10074-86. PubMed ID: 9665712
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.