These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

679 related articles for article (PubMed ID: 16448153)

  • 61. SPEEK-zirconium hydrogen phosphate composite membranes with low methanol permeability prepared by electro-migration and in situ precipitation.
    Tripathi BP; Shahi VK
    J Colloid Interface Sci; 2007 Dec; 316(2):612-21. PubMed ID: 17888445
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Enhancement in Proton Conductivity and Thermal Stability in Nafion Membranes Induced by Incorporation of Sulfonated Carbon Nanotubes.
    Yin C; Li J; Zhou Y; Zhang H; Fang P; He C
    ACS Appl Mater Interfaces; 2018 Apr; 10(16):14026-14035. PubMed ID: 29620850
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Temperature- and humidity-controlled SAXS analysis of proton-conductive ionomer membranes for fuel cells.
    Mochizuki T; Kakinuma K; Uchida M; Deki S; Watanabe M; Miyatake K
    ChemSusChem; 2014 Mar; 7(3):729-33. PubMed ID: 24578201
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Branched Sulfonimide-Based Proton Exchange Polymer Membranes from Poly(Phenylenebenzopheneone)s for Fuel Cell Applications.
    Sutradhar SC; Yoon S; Ryu T; Jin L; Zhang W; Kim W; Jang H
    Membranes (Basel); 2021 Feb; 11(3):. PubMed ID: 33673539
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Reinforcement effect in tandemly sulfonated, partially fluorinated polyphenylene PEMs for fuel cells.
    Guo L; Masuda A; Miyatake K
    RSC Adv; 2023 Apr; 13(16):11225-11233. PubMed ID: 37056974
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Ordered structures in proton conducting membranes from supramolecular liquid crystal polymers.
    Every HA; Mendes E; Picken SJ
    J Phys Chem B; 2006 Nov; 110(47):23729-35. PubMed ID: 17125333
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Highly Stable, Low Gas Crossover, Proton-Conducting Phenylated Polyphenylenes.
    Adamski M; Skalski TJG; Britton B; Peckham TJ; Metzler L; Holdcroft S
    Angew Chem Int Ed Engl; 2017 Jul; 56(31):9058-9061. PubMed ID: 28609604
    [TBL] [Abstract][Full Text] [Related]  

  • 68. New types of Brönsted acid-base ionic liquids-based membranes for applications in PEMFCs.
    Fernicola A; Panero S; Scrosati B; Tamada M; Ohno H
    Chemphyschem; 2007 May; 8(7):1103-7. PubMed ID: 17393375
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Biomembranes for fuel cell electrolytes employing anhydrous proton conducting uracil composites.
    Yamada M; Honma I
    Biosens Bioelectron; 2006 May; 21(11):2064-9. PubMed ID: 16530401
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Ameliorated Performance of Sulfonated Poly(Arylene Ether Sulfone) Block Copolymers with Increased Hydrophilic Oligomer Ratio in Proton-Exchange Membrane Fuel Cells Operating at 80% Relative Humidity.
    Kim AR; Vinothkannan M; Lee KH; Chu JY; Ryu SK; Kim HG; Lee JY; Lee HK; Yoo DJ
    Polymers (Basel); 2020 Aug; 12(9):. PubMed ID: 32825217
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Temperature dependence of ion and water transport in perfluorinated ionomer membranes for fuel cells.
    Saito M; Hayamizu K; Okada T
    J Phys Chem B; 2005 Mar; 109(8):3112-9. PubMed ID: 16851330
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Permselectivity and conductivity of membranes based on sulfonated naphthalenic copolyimides.
    Guo X; Zhai F; Fang J; Laguna MF; López-Gonzalez M; Riande E
    J Phys Chem B; 2007 Dec; 111(49):13694-702. PubMed ID: 18001082
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Vibrational studies and properties of hybrid inorganic-organic proton conducting membranes based on Nafion and hafnium oxide nanoparticles.
    Vittadello M; Negro E; Lavina S; Pace G; Safari A; Di Noto V
    J Phys Chem B; 2008 Dec; 112(51):16590-600. PubMed ID: 19032059
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Sulfonated graphene oxide/Nafion composite membranes for high temperature and low humidity proton exchange membrane fuel cells.
    Vinothkannan M; Kim AR; Gnana Kumar G; Yoo DJ
    RSC Adv; 2018 Feb; 8(14):7494-7508. PubMed ID: 35539095
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Embedded hydrophilic nanogranules with radiating proton-conducting channels in a hydrophobic matrix.
    Pei H; Hong L; Lee JY
    Langmuir; 2007 Apr; 23(9):5077-84. PubMed ID: 17378590
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Parallel cylindrical water nanochannels in Nafion fuel-cell membranes.
    Schmidt-Rohr K; Chen Q
    Nat Mater; 2008 Jan; 7(1):75-83. PubMed ID: 18066069
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Sulfonated Polyimide-Clay Thin Films for Energy Application.
    Ali F; Saeed S; Shah SS; Rahim F; Duclaux L; Levêque JM; Reinert L
    Recent Pat Nanotechnol; 2016; 10(3):221-230. PubMed ID: 27136932
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Highly Proton Conductive Poly(vinyl acetate)/Nafion® Composite Membrane for Proton Exchange Membrane Fuel Cell Application.
    Kabir MDL; Kim HJ; Lee CJ; Choi SJ
    J Nanosci Nanotechnol; 2018 Sep; 18(9):6536-6540. PubMed ID: 29677829
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Functionalized organic-inorganic nanostructured N-p-carboxy benzyl chitosan-silica-PVA hybrid polyelectrolyte complex as proton exchange membrane for DMFC applications.
    Tripathi BP; Shahi VK
    J Phys Chem B; 2008 Dec; 112(49):15678-90. PubMed ID: 19368033
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Anhydrous phosphoric Acid functionalized sintered mesoporous silica nanocomposite proton exchange membranes for fuel cells.
    Zeng J; He B; Lamb K; De Marco R; Shen PK; Jiang SP
    ACS Appl Mater Interfaces; 2013 Nov; 5(21):11240-8. PubMed ID: 24125494
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 34.