These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

385 related articles for article (PubMed ID: 16448629)

  • 21. Covert orienting of attention in 3-month-old infants: The case of biological motion.
    Lunghi M; Di Giorgio E; Benavides-Varela S; Simion F
    Infant Behav Dev; 2020 Feb; 58():101422. PubMed ID: 32044581
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Temporal dynamics of lateralized ERP components elicited during endogenous attentional shifts to relevant tactile events.
    van Velzen J; Forster B; Eimer M
    Psychophysiology; 2002 Nov; 39(6):874-8. PubMed ID: 12462516
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Lateralized human cortical activity for shifting visuospatial attention and initiating saccades.
    Wauschkuhn B; Verleger R; Wascher E; Klostermann W; Burk M; Heide W; Kömpf D
    J Neurophysiol; 1998 Dec; 80(6):2900-10. PubMed ID: 9862894
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The effect of offset cues on saccade programming and covert attention.
    Smith DT; Casteau S
    Q J Exp Psychol (Hove); 2019 Mar; 72(3):481-490. PubMed ID: 29372674
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The influence of spatial congruency and movement preparation time on saccade curvature in simultaneous and sequential dual-tasks.
    Moehler T; Fiehler K
    Vision Res; 2015 Nov; 116(Pt A):25-35. PubMed ID: 26410291
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Anterior and posterior attentional control systems use different spatial reference frames: ERP evidence from covert tactile-spatial orienting.
    Eimer M; Forster B; Van Velzen J
    Psychophysiology; 2003 Nov; 40(6):924-33. PubMed ID: 14986845
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The dynamics of shifting visuospatial attention revealed by event-related potentials.
    Nobre AC; Sebestyen GN; Miniussi C
    Neuropsychologia; 2000; 38(7):964-74. PubMed ID: 10775707
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Post-saccadic updating of visual space in the posterior parietal cortex in humans.
    Bellebaum C; Hoffmann KP; Daum I
    Behav Brain Res; 2005 Sep; 163(2):194-203. PubMed ID: 15970337
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of spatial congruency on saccade and visual discrimination performance in a dual-task paradigm.
    Moehler T; Fiehler K
    Vision Res; 2014 Dec; 105():100-11. PubMed ID: 25449339
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Shifting visual attention in space: an electrophysiological analysis using high spatial resolution mapping.
    Hopf JM; Mangun GR
    Clin Neurophysiol; 2000 Jul; 111(7):1241-57. PubMed ID: 10880800
    [TBL] [Abstract][Full Text] [Related]  

  • 31. ERP correlates of anticipatory attention: spatial and non-spatial specificity and relation to subsequent selective attention.
    Dale CL; Simpson GV; Foxe JJ; Luks TL; Worden MS
    Exp Brain Res; 2008 Jun; 188(1):45-62. PubMed ID: 18347786
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Neural activity associated with attention orienting triggered by gaze cues: A study of lateralized ERPs.
    Holmes A; Mogg K; Garcia LM; Bradley BP
    Soc Neurosci; 2010; 5(3):285-95. PubMed ID: 20162493
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Orienting visuospatial attention generates manual reaction time asymmetries in target detection and pointing.
    Barthélémy S; Boulinguez P
    Behav Brain Res; 2002 Jun; 133(1):109-16. PubMed ID: 12048178
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Properties of attentional selection during the preparation of sequential saccades.
    Baldauf D; Deubel H
    Exp Brain Res; 2008 Jan; 184(3):411-25. PubMed ID: 17846754
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Microsaccade-related brain potentials signal the focus of visuospatial attention.
    Meyberg S; Werkle-Bergner M; Sommer W; Dimigen O
    Neuroimage; 2015 Jan; 104():79-88. PubMed ID: 25285375
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Attentional and intentional cueing in a Simon task: an EEG-based approach.
    Wascher E; Wolber M
    Psychol Res; 2004 Feb; 68(1):18-30. PubMed ID: 12750887
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Revising the link between microsaccades and the spatial cueing of voluntary attention.
    Meyberg S; Sinn P; Engbert R; Sommer W
    Vision Res; 2017 Apr; 133():47-60. PubMed ID: 28163059
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Perceptual load affects spatial and nonspatial visual selection processes: an event-related brain potential study.
    Barnhardt J; Ritter W; Gomes H
    Neuropsychologia; 2008; 46(7):2071-8. PubMed ID: 18355882
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Interactions between voluntary and stimulus-driven spatial attention mechanisms across sensory modalities.
    Santangelo V; Olivetti Belardinelli M; Spence C; Macaluso E
    J Cogn Neurosci; 2009 Dec; 21(12):2384-97. PubMed ID: 19199406
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Similar effect of cueing conditions on attentional and saccadic temporal dynamics.
    Filali-Sadouk N; Castet E; Olivier E; Zenon A
    J Vis; 2010 Apr; 10(4):21.1-13. PubMed ID: 20465340
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.