These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
625 related articles for article (PubMed ID: 16448667)
1. Temporal association of entomopathogenic nematodes (Rhabditida: Steinernematidae and Heterorhabditidae) and bacteria. Gouge DH; Snyder JL J Invertebr Pathol; 2006 Mar; 91(3):147-57. PubMed ID: 16448667 [TBL] [Abstract][Full Text] [Related]
2. Influence of cell density and phase variants of bacterial symbionts (Xenorhabdus spp.) on dauer juvenile recovery and development of biocontrol nematodes Steinernema carpocapsae and S. feltiae (Nematoda: Rhabditida). Hirao A; Ehlers RU Appl Microbiol Biotechnol; 2009 Aug; 84(1):77-85. PubMed ID: 19319521 [TBL] [Abstract][Full Text] [Related]
3. Influence of nematode age and culture conditions on morphological and physiological parameters in the bacterial vesicle of Steinernema carpocapsae (Nematoda: Steinernematidae). Flores-Lara Y; Renneckar D; Forst S; Goodrich-Blair H; Stock P J Invertebr Pathol; 2007 Jun; 95(2):110-8. PubMed ID: 17376477 [TBL] [Abstract][Full Text] [Related]
4. Effect of temperature on the development of Steinernema carpocapsae and Steinernema feltiae (Nematoda: Rhabditida) in liquid culture. Hirao A; Ehlers RU Appl Microbiol Biotechnol; 2009 Oct; 84(6):1061-7. PubMed ID: 19455323 [TBL] [Abstract][Full Text] [Related]
5. Temperature effects on Korean entomopathogenic nematodes, Steinernema glaseri and S. longicaudum, and their symbiotic bacteria. Hang TD; Choo HY; Lee DW; Lee SM; Kaya HK; Park CG J Microbiol Biotechnol; 2007 Mar; 17(3):420-7. PubMed ID: 18050945 [TBL] [Abstract][Full Text] [Related]
6. Susceptibility of diamond back moth, Plutella xylostella (L) to entomopathogenic nematodes. Shinde S; Singh NP Indian J Exp Biol; 2000 Sep; 38(9):956-9. PubMed ID: 12561960 [TBL] [Abstract][Full Text] [Related]
7. Characterization of Xenorhabdus isolates from La Rioja (Northern Spain) and virulence with and without their symbiotic entomopathogenic nematodes (Nematoda: Steinernematidae). Campos-Herrera R; Tailliez P; Pagès S; Ginibre N; Gutiérrez C; Boemare NE J Invertebr Pathol; 2009 Oct; 102(2):173-81. PubMed ID: 19682458 [TBL] [Abstract][Full Text] [Related]
8. Efficacy of indigenous entomopathogenic nematodes (Rhabditida: Heterorhabditidae, Steinernematidae), from Rio Grande do Sul Brazil, against Anastrephafraterculus (Wied.) (Diptera: Tephritidae) in peach orchards. Barbosa-Negrisoli CR; Garcia MS; Dolinski C; Negrisoli AS; Bernardi D; Nava DE J Invertebr Pathol; 2009 Sep; 102(1):6-13. PubMed ID: 19460384 [TBL] [Abstract][Full Text] [Related]
9. Identification of symbiotic bacteria (Photorhabdus and Xenorhabdus) from the entomopathogenic nematodes Heterorhabditis marelatus and Steinernema oregonense based on 16S rDNA sequence. Liu J; Berry RE; Blouin MS J Invertebr Pathol; 2001 Feb; 77(2):87-91. PubMed ID: 11273687 [TBL] [Abstract][Full Text] [Related]
10. Host range and infectivity of Heterorhabditis bacteriophora (Heterorhabditidae) from Ukraine. Stefanovska T; Pidlishyuk V; Kaya H Commun Agric Appl Biol Sci; 2008; 73(4):693-8. PubMed ID: 19226814 [TBL] [Abstract][Full Text] [Related]
11. Comparative Assessment of Four Steinernematidae and Three Heterorhabditidae Species for Infectivity of Larval Diabrotica Virgifera Virgifera. Geisert RW; Cheruiyot DJ; Hibbard BE; Shapiro-Ilan DI; Shelby KS; Coudron TA J Econ Entomol; 2018 Apr; 111(2):542-548. PubMed ID: 29365135 [TBL] [Abstract][Full Text] [Related]
12. Role of symbiotic and non-symbiotic bacteria in carbon dioxide production from hosts infected with Steinernema riobrave. Christen JM; Campbell JF; Zurek L; Shapiro-Ilan DI; Lewis EE; Ramaswamy SB J Invertebr Pathol; 2008 Sep; 99(1):35-42. PubMed ID: 18621386 [TBL] [Abstract][Full Text] [Related]
14. Pathogenicity of axenic Steinernema feltiae, Xenorhabdus bovienii, and the bacto-helminthic complex to larvae of Tipula oleracea (Diptera) and Galleria mellonella (Lepidoptera). Ehlers RU; Wulff A; Peters A J Invertebr Pathol; 1997 May; 69(3):212-7. PubMed ID: 9170346 [TBL] [Abstract][Full Text] [Related]
15. Effect of insect cadaver desiccation and soil water potential during rehydration on entomopathogenic nematode (Rhabditida: Steinernematidae and Heterorhabditidae) production and virulence. Spence KO; Stevens GN; Arimoto H; Ruiz-Vega J; Kaya HK; Lewis EE J Invertebr Pathol; 2011 Feb; 106(2):268-73. PubMed ID: 21047513 [TBL] [Abstract][Full Text] [Related]
16. Activity of superoxide dismutase in Galleria mellonella larvae infected with entomopathogenic nematodes Steinernema affinis and S. feltiae. Zółtowska K; Grochla P; Łopieńska-Biernat E Wiad Parazytol; 2006; 52(4):283-6. PubMed ID: 17432619 [TBL] [Abstract][Full Text] [Related]
17. Susceptibility of Dalotia coriaria (Kraatz) (Coleoptera: Staphylinidae) to Entomopathogenic Nematodes (Rhabditida: Heterorhabditidae and Steinernematidae). Tourtois J; Grieshop MJ Insects; 2015 Mar; 6(1):224-35. PubMed ID: 26463077 [TBL] [Abstract][Full Text] [Related]
18. Virulence of entomopathogenic nematodes to pecan weevil larvae, Curculio caryae (Coleoptera: Curculionidae), in the laboratory. Shapiro-Ilan DI J Econ Entomol; 2001 Feb; 94(1):7-13. PubMed ID: 11233136 [TBL] [Abstract][Full Text] [Related]
19. Dynamics of carbon dioxide release from insects infected with entomopathogenic nematodes. Ramos-Rodríguez O; Campbell JF; Lewis EE; Shapiro-Ilan DI; Ramaswamy SB J Invertebr Pathol; 2007 Jan; 94(1):64-9. PubMed ID: 17054978 [TBL] [Abstract][Full Text] [Related]
20. Facultative scavenging as a survival strategy of entomopathogenic nematodes. San-Blas E; Gowen SR Int J Parasitol; 2008 Jan; 38(1):85-91. PubMed ID: 17662985 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]