These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
442 related articles for article (PubMed ID: 16449202)
1. Deletion of the Tetrahymena thermophila rDNA replication fork barrier region disrupts macronuclear rDNA excision and creates a fragile site in the micronuclear genome. Yakisich JS; Kapler GM Nucleic Acids Res; 2006; 34(2):620-34. PubMed ID: 16449202 [TBL] [Abstract][Full Text] [Related]
2. A weak germ-line excision mutation blocks developmentally controlled amplification of the rDNA minichromosome of Tetrahymena thermophila. Kapler GM; Blackburn EH Genes Dev; 1994 Jan; 8(1):84-95. PubMed ID: 8288130 [TBL] [Abstract][Full Text] [Related]
3. Genome-wide characterization of Tetrahymena thermophila chromosome breakage sites. II. Physical and genetic mapping. Cassidy-Hanley D; Bisharyan Y; Fridman V; Gerber J; Lin C; Orias E; Orias JD; Ryder H; Vong L; Hamilton EP Genetics; 2005 Aug; 170(4):1623-31. PubMed ID: 15956676 [TBL] [Abstract][Full Text] [Related]
4. Developmental progression of Tetrahymena through the cell cycle and conjugation. Cole E; Sugai T Methods Cell Biol; 2012; 109():177-236. PubMed ID: 22444146 [TBL] [Abstract][Full Text] [Related]
5. Evolutionary conservation of sequences directing chromosome breakage and rDNA palindrome formation in tetrahymenine ciliates. Coyne RS; Yao MC Genetics; 1996 Dec; 144(4):1479-87. PubMed ID: 8978037 [TBL] [Abstract][Full Text] [Related]
7. TIF1 Represses rDNA replication initiation, but promotes normal S phase progression and chromosome transmission in Tetrahymena. Morrison TL; Yakisich JS; Cassidy-Hanley D; Kapler GM Mol Biol Cell; 2005 Jun; 16(6):2624-35. PubMed ID: 15772155 [TBL] [Abstract][Full Text] [Related]
8. The intranuclear organization of normal, hemizygous and excision-deficient rRNA genes during developmental amplification in Tetrahymena thermophila. Ward JG; Blomberg P; Hoffman N; Yao MC Chromosoma; 1997 Sep; 106(4):233-42. PubMed ID: 9254725 [TBL] [Abstract][Full Text] [Related]
9. Developmentally regulated processing and replication of the Tetrahymena rDNA minichromosome. Kapler GM Curr Opin Genet Dev; 1993 Oct; 3(5):730-5. PubMed ID: 8274855 [TBL] [Abstract][Full Text] [Related]
10. Progeny of germ line knockouts of ASI2, a gene encoding a putative signal transduction receptor in Tetrahymena thermophila, fail to make the transition from sexual reproduction to vegetative growth. Li S; Yin L; Cole ES; Udani RA; Karrer KM Dev Biol; 2006 Jul; 295(2):633-46. PubMed ID: 16712831 [TBL] [Abstract][Full Text] [Related]
11. An intramolecular recombination mechanism for the formation of the rRNA gene palindrome of Tetrahymena thermophila. Butler DK; Yasuda LE; Yao MC Mol Cell Biol; 1995 Dec; 15(12):7117-26. PubMed ID: 8524279 [TBL] [Abstract][Full Text] [Related]
12. Characterization and use of Tetrahymena thermophila artificial chromosome 2 (TtAC2) constructed by biomimetic of macronuclear rDNA minichromosome. Çalıseki M; Üstüntanır Dede AF; Arslanyolu M Microbiol Res; 2021 Jul; 248():126764. PubMed ID: 33887535 [TBL] [Abstract][Full Text] [Related]
13. Genome-wide characterization of tetrahymena thermophila chromosome breakage sites. I. Cloning and identification of functional sites. Hamilton E; Bruns P; Lin C; Merriam V; Orias E; Vong L; Cassidy-Hanley D Genetics; 2005 Aug; 170(4):1611-21. PubMed ID: 15956677 [TBL] [Abstract][Full Text] [Related]
15. Regulatory sequences for the amplification and replication of the ribosomal DNA minichromosome in Tetrahymena thermophila. Blomberg P; Randolph C; Yao CH; Yao MC Mol Cell Biol; 1997 Dec; 17(12):7237-47. PubMed ID: 9372956 [TBL] [Abstract][Full Text] [Related]
16. Excision of micronuclear-specific DNA requires parental expression of pdd2p and occurs independently from DNA replication in Tetrahymena thermophila. Nikiforov MA; Smothers JF; Gorovsky MA; Allis CD Genes Dev; 1999 Nov; 13(21):2852-62. PubMed ID: 10557212 [TBL] [Abstract][Full Text] [Related]
17. Cis-acting requirements in flanking DNA for the programmed elimination of mse2.9: a common mechanism for deletion of internal eliminated sequences from the developing macronucleus of Tetrahymena thermophila. Fillingham JS; Bruno D; Pearlman RE Nucleic Acids Res; 2001 Jan; 29(2):488-98. PubMed ID: 11139619 [TBL] [Abstract][Full Text] [Related]
18. Role of micronucleus-limited DNA in programmed deletion of mse2.9 during macronuclear development of Tetrahymena thermophila. Fillingham JS; Pearlman RE Eukaryot Cell; 2004 Apr; 3(2):288-301. PubMed ID: 15075259 [TBL] [Abstract][Full Text] [Related]
19. Conserved cis- and trans-acting determinants for replication initiation and regulation of replication fork movement in tetrahymenid species. Yue M; Reischmann KP; Kapler GM Nucleic Acids Res; 1998 Oct; 26(20):4635-44. PubMed ID: 9753731 [TBL] [Abstract][Full Text] [Related]
20. Identification of DNA-binding proteins that recognize a conserved type I repeat sequence in the replication origin region of Tetrahymena rDNA. Umthun AR; Hou Z; Sibenaller ZA; Shaiu WL; Dobbs DL Nucleic Acids Res; 1994 Oct; 22(21):4432-40. PubMed ID: 7971273 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]