These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

355 related articles for article (PubMed ID: 16449563)

  • 21. The cost of living large: comparative gliding performance in flying lizards (Agamidae: Draco).
    McGuire JA; Dudley R
    Am Nat; 2005 Jul; 166(1):93-106. PubMed ID: 15937792
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Stability analysis of gliding flight of a swallowtail butterfly Papilio xuthus.
    Okamoto M; Sunada S; Tokutake H
    J Theor Biol; 2009 Mar; 257(2):191-202. PubMed ID: 19101568
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The role of drag in insect hovering.
    Wang ZJ
    J Exp Biol; 2004 Nov; 207(Pt 23):4147-55. PubMed ID: 15498960
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Wing and body kinematics of takeoff and landing flight in the pigeon (Columba livia).
    Berg AM; Biewener AA
    J Exp Biol; 2010 May; 213(Pt 10):1651-8. PubMed ID: 20435815
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Investigation of a bio-inspired lift-enhancing effector on a 2D airfoil.
    Johnston J; Gopalarathnam A
    Bioinspir Biomim; 2012 Sep; 7(3):036003. PubMed ID: 22498691
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Global dynamics of non-equilibrium gliding in animals.
    Yeaton IJ; Socha JJ; Ross SD
    Bioinspir Biomim; 2017 Mar; 12(2):026013. PubMed ID: 28205508
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Stroke patterns and regulation of swim speed and energy cost in free-ranging Brünnich's guillemots.
    Lovvorn JR; Watanuki Y; Kato A; Naito Y; Liggins GA
    J Exp Biol; 2004 Dec; 207(Pt 26):4679-95. PubMed ID: 15579562
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hovering of model insects: simulation by coupling equations of motion with Navier-Stokes equations.
    Wu JH; Zhang YL; Sun M
    J Exp Biol; 2009 Oct; 212(Pt 20):3313-29. PubMed ID: 19801436
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Three-dimensional kinematics of hummingbird flight.
    Tobalske BW; Warrick DR; Clark CJ; Powers DR; Hedrick TL; Hyder GA; Biewener AA
    J Exp Biol; 2007 Jul; 210(Pt 13):2368-82. PubMed ID: 17575042
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hovering flight in the honeybee Apis mellifera: kinematic mechanisms for varying aerodynamic forces.
    Vance JT; Altshuler DL; Dickson WB; Dickinson MH; Roberts SP
    Physiol Biochem Zool; 2014; 87(6):870-81. PubMed ID: 25461650
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Kinematics of flight and the relationship to the vortex wake of a Pallas' long tongued bat (Glossophaga soricina).
    Wolf M; Johansson LC; von Busse R; Winter Y; Hedenström A
    J Exp Biol; 2010 Jun; 213(Pt 12):2142-53. PubMed ID: 20511529
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Aerodynamic efficiency of flapping flight: analysis of a two-stroke model.
    Wang ZJ
    J Exp Biol; 2008 Jan; 211(Pt 2):234-8. PubMed ID: 18165251
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Wing beat kinematics of a nectar-feeding bat, Glossophaga soricina, flying at different flight speeds and Strouhal numbers.
    Lindhe Norberg UM; Winter Y
    J Exp Biol; 2006 Oct; 209(Pt 19):3887-97. PubMed ID: 16985205
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Wake analysis of aerodynamic components for the glide envelope of a jackdaw (Corvus monedula).
    KleinHeerenbrink M; Warfvinge K; Hedenström A
    J Exp Biol; 2016 May; 219(Pt 10):1572-81. PubMed ID: 26994178
    [TBL] [Abstract][Full Text] [Related]  

  • 35. They seem to glide. Are there aerodynamic effects in leaping prosimian primates?
    Demes B; Forchap E; Herwig H
    Z Morphol Anthropol; 1991; 78(3):373-85. PubMed ID: 1909482
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Gliding flight in the paradise tree snake.
    Socha JJ
    Nature; 2002 Aug; 418(6898):603-4. PubMed ID: 12167849
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Gliding flight in Chrysopelea: turning a snake into a wing.
    Socha JJ
    Integr Comp Biol; 2011 Dec; 51(6):969-82. PubMed ID: 21816808
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dragonfly flight: free-flight and tethered flow visualizations reveal a diverse array of unsteady lift-generating mechanisms, controlled primarily via angle of attack.
    Thomas AL; Taylor GK; Srygley RB; Nudds RL; Bomphrey RJ
    J Exp Biol; 2004 Nov; 207(Pt 24):4299-323. PubMed ID: 15531651
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of size and behavior on aerial performance of two species of flying snakes (Chrysopelea).
    Socha JJ; LaBarbera M
    J Exp Biol; 2005 May; 208(Pt 10):1835-47. PubMed ID: 15879064
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Leading-edge vortex improves lift in slow-flying bats.
    Muijres FT; Johansson LC; Barfield R; Wolf M; Spedding GR; Hedenström A
    Science; 2008 Feb; 319(5867):1250-3. PubMed ID: 18309085
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.