These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

387 related articles for article (PubMed ID: 16449568)

  • 1. Anatomically diverse butterfly scales all produce structural colours by coherent scattering.
    Prum RO; Quinn T; Torres RH
    J Exp Biol; 2006 Feb; 209(Pt 4):748-65. PubMed ID: 16449568
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Blue integumentary structural colours in dragonflies (Odonata) are not produced by incoherent Tyndall scattering.
    Prum RO; Cole JA; Torres RH
    J Exp Biol; 2004 Oct; 207(Pt 22):3999-4009. PubMed ID: 15472030
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural colouration of avian skin: convergent evolution of coherently scattering dermal collagen arrays.
    Prum RO; Torres R
    J Exp Biol; 2003 Jul; 206(Pt 14):2409-29. PubMed ID: 12796458
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural colouration of mammalian skin: convergent evolution of coherently scattering dermal collagen arrays.
    Prum RO; Torres RH
    J Exp Biol; 2004 May; 207(Pt 12):2157-72. PubMed ID: 15143148
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coloration principles of nymphaline butterflies - thin films, melanin, ommochromes and wing scale stacking.
    Stavenga DG; Leertouwer HL; Wilts BD
    J Exp Biol; 2014 Jun; 217(Pt 12):2171-80. PubMed ID: 24675561
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wing scale microstructures and nanostructures in butterflies--natural photonic crystals.
    Vértesy Z; Bálint Z; Kertész K; Vigneron JP; Lousse V; Biró LP
    J Microsc; 2006 Oct; 224(Pt 1):108-10. PubMed ID: 17100919
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural color films with lotus effects, superhydrophilicity, and tunable stop-bands.
    Sato O; Kubo S; Gu ZZ
    Acc Chem Res; 2009 Jan; 42(1):1-10. PubMed ID: 18837520
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A fourier tool for the analysis of coherent light scattering by bio-optical nanostructures.
    Prum RO; Torres RH
    Integr Comp Biol; 2003 Aug; 43(4):591-602. PubMed ID: 21680467
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Colors and pterin pigmentation of pierid butterfly wings.
    Wijnen B; Leertouwer HL; Stavenga DG
    J Insect Physiol; 2007 Dec; 53(12):1206-17. PubMed ID: 17669418
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mysterious coloring: structural origin of color mixing for two breeds of Papilio butterflies.
    Diao YY; Liu XY
    Opt Express; 2011 May; 19(10):9232-41. PubMed ID: 21643177
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Butterfly wing colours: scale beads make white pierid wings brighter.
    Stavenga DG; Stowe S; Siebke K; Zeil J; Arikawa K
    Proc Biol Sci; 2004 Aug; 271(1548):1577-84. PubMed ID: 15306303
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polarization-sensitive color in butterfly scales: polarization conversion from ridges with reflecting elements.
    Zhang K; Tang Y; Meng J; Wang G; Zhou H; Fan T; Zhang D
    Opt Express; 2014 Nov; 22(22):27437-50. PubMed ID: 25401892
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fine structures of wing scales in Sasakia charonda butterflies as photonic crystals.
    Matejková-Plskova J; Shiojiri S; Shiojiri M
    J Microsc; 2009 Nov; 236(2):88-93. PubMed ID: 19903230
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pterin pigment granules are responsible for both broadband light scattering and wavelength selective absorption in the wing scales of pierid butterflies.
    Morehouse NI; Vukusic P; Rutowski R
    Proc Biol Sci; 2007 Feb; 274(1608):359-66. PubMed ID: 17164199
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanisms of structural colour in the Morpho butterfly: cooperation of regularity and irregularity in an iridescent scale.
    Kinoshita S; Yoshioka S; Kawagoe K
    Proc Biol Sci; 2002 Jul; 269(1499):1417-21. PubMed ID: 12137569
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glass scales on the wing of the swordtail butterfly Graphium sarpedon act as thin film polarizing reflectors.
    Stavenga DG; Matsushita A; Arikawa K; Leertouwer HL; Wilts BD
    J Exp Biol; 2012 Feb; 215(Pt 4):657-62. PubMed ID: 22279073
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physiologically induced color-pattern changes in butterfly wings: mechanistic and evolutionary implications.
    Otaki JM
    J Insect Physiol; 2008 Jul; 54(7):1099-112. PubMed ID: 18638480
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Condition dependence, quantitative genetics, and the potential signal content of iridescent ultraviolet butterfly coloration.
    Kemp DJ; Rutowski RL
    Evolution; 2007 Jan; 61(1):168-83. PubMed ID: 17300436
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural colors in nature: the role of regularity and irregularity in the structure.
    Kinoshita S; Yoshioka S
    Chemphyschem; 2005 Aug; 6(8):1442-59. PubMed ID: 16015669
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The actin cytoskeleton plays multiple roles in structural colour formation in butterfly wing scales.
    Lloyd VJ; Burg SL; Harizanova J; Garcia E; Hill O; Enciso-Romero J; Cooper RL; Flenner S; Longo E; Greving I; Nadeau NJ; Parnell AJ
    Nat Commun; 2024 May; 15(1):4073. PubMed ID: 38769302
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.