These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 16449802)

  • 1. Phosphorylation and protonation of neighboring MiRP2 sites: function and pathophysiology of MiRP2-Kv3.4 potassium channels in periodic paralysis.
    Abbott GW; Butler MH; Goldstein SA
    FASEB J; 2006 Feb; 20(2):293-301. PubMed ID: 16449802
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MiRP2 forms potassium channels in skeletal muscle with Kv3.4 and is associated with periodic paralysis.
    Abbott GW; Butler MH; Bendahhou S; Dalakas MC; Ptacek LJ; Goldstein SA
    Cell; 2001 Jan; 104(2):217-31. PubMed ID: 11207363
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lack of association of the potassium channel-associated peptide MiRP2-R83H variant with periodic paralysis.
    Sternberg D; Tabti N; Fournier E; Hainque B; Fontaine B
    Neurology; 2003 Sep; 61(6):857-9. PubMed ID: 14504341
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Disease-associated mutations in KCNE potassium channel subunits (MiRPs) reveal promiscuous disruption of multiple currents and conservation of mechanism.
    Abbott GW; Goldstein SA
    FASEB J; 2002 Mar; 16(3):390-400. PubMed ID: 11874988
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MinK, MiRP1, and MiRP2 diversify Kv3.1 and Kv3.2 potassium channel gating.
    Lewis A; McCrossan ZA; Abbott GW
    J Biol Chem; 2004 Feb; 279(9):7884-92. PubMed ID: 14679187
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of S4 charges in voltage-dependent and voltage-independent KCNQ1 potassium channel complexes.
    Panaghie G; Abbott GW
    J Gen Physiol; 2007 Feb; 129(2):121-33. PubMed ID: 17227916
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction of KCNE subunits with the KCNQ1 K+ channel pore.
    Panaghie G; Tai KK; Abbott GW
    J Physiol; 2006 Feb; 570(Pt 3):455-67. PubMed ID: 16308347
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MinK-related peptide 2 modulates Kv2.1 and Kv3.1 potassium channels in mammalian brain.
    McCrossan ZA; Lewis A; Panaghie G; Jordan PN; Christini DJ; Lerner DJ; Abbott GW
    J Neurosci; 2003 Sep; 23(22):8077-91. PubMed ID: 12954870
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The MiRP2-Kv3.4 potassium channel: muscling in on Alzheimer's disease.
    Choi E; Abbott GW
    Mol Pharmacol; 2007 Sep; 72(3):499-501. PubMed ID: 17595326
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cell cycle-dependent expression of Kv3.4 channels modulates proliferation of human uterine artery smooth muscle cells.
    Miguel-Velado E; Pérez-Carretero FD; Colinas O; Cidad P; Heras M; López-López JR; Pérez-García MT
    Cardiovasc Res; 2010 Jun; 86(3):383-91. PubMed ID: 20093253
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Periodic paralysis mutation MiRP2-R83H in controls: Interpretations and general recommendation.
    Jurkat-Rott K; Lehmann-Horn F
    Neurology; 2004 Mar; 62(6):1012-5. PubMed ID: 15037716
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of N-glycosylation consensus sequences in the Kv3.1 channel.
    Brooks NL; Corey MJ; Schwalbe RA
    FEBS J; 2006 Jul; 273(14):3287-300. PubMed ID: 16792699
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein kinase C modulates inactivation of Kv3.3 channels.
    Desai R; Kronengold J; Mei J; Forman SA; Kaczmarek LK
    J Biol Chem; 2008 Aug; 283(32):22283-94. PubMed ID: 18539595
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A single residue in the S6 transmembrane domain governs the differential flecainide sensitivity of voltage-gated potassium channels.
    Herrera D; Mamarbachi A; Simoes M; Parent L; Sauvé R; Wang Z; Nattel S
    Mol Pharmacol; 2005 Aug; 68(2):305-16. PubMed ID: 15883204
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A KCNC1 mutation in epilepsy of infancy with focal migrating seizures produces functional channels that fail to be regulated by PKC phosphorylation.
    Zhang Y; Ali SR; Nabbout R; Barcia G; Kaczmarek LK
    J Neurophysiol; 2021 Aug; 126(2):532-539. PubMed ID: 34232791
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrophobic mutations alter the movement of Mg2+ in the pore of voltage-gated potassium channels.
    Harris RE; Isacoff EY
    Biophys J; 1996 Jul; 71(1):209-19. PubMed ID: 8804604
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Control of voltage-gated K+ channel permeability to NMDG+ by a residue at the outer pore.
    Wang Z; Wong NC; Cheng Y; Kehl SJ; Fedida D
    J Gen Physiol; 2009 Apr; 133(4):361-74. PubMed ID: 19332619
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inactivation of Kv3.3 potassium channels in heterologous expression systems.
    Fernandez FR; Morales E; Rashid AJ; Dunn RJ; Turner RW
    J Biol Chem; 2003 Oct; 278(42):40890-8. PubMed ID: 12923191
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional effects of spinocerebellar ataxia type 13 mutations are conserved in zebrafish Kv3.3 channels.
    Mock AF; Richardson JL; Hsieh JY; Rinetti G; Papazian DM
    BMC Neurosci; 2010 Aug; 11():99. PubMed ID: 20712895
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A naturally occurring omega current in a Kv3 family potassium channel from a platyhelminth.
    Klassen TL; Spencer AN; Gallin WJ
    BMC Neurosci; 2008 Jun; 9():52. PubMed ID: 18565223
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.