BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 16449974)

  • 1. Loss of one p53 allele results in four-fold reduction of p53 mRNA and protein: a basis for p53 haplo-insufficiency.
    Lynch CJ; Milner J
    Oncogene; 2006 Jun; 25(24):3463-70. PubMed ID: 16449974
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tissue-specific expression of SV40 in tumors associated with the Li-Fraumeni syndrome.
    Malkin D; Chilton-MacNeill S; Meister LA; Sexsmith E; Diller L; Garcea RL
    Oncogene; 2001 Jul; 20(33):4441-9. PubMed ID: 11494139
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cell cycle arrest defect in Li-Fraumeni Syndrome: a mechanism of cancer predisposition?
    Williams KJ; Boyle JM; Birch JM; Norton JD; Scott D
    Oncogene; 1997 Jan; 14(3):277-82. PubMed ID: 9018113
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification and characterization of potential human carcinogens using B6.129tm1Trp53 heterozygous null mice and loss of heterozygosity at the Trp53 locus.
    French JE
    IARC Sci Publ; 2004; (157):271-87. PubMed ID: 15055301
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mutant p53 gain of function in two mouse models of Li-Fraumeni syndrome.
    Olive KP; Tuveson DA; Ruhe ZC; Yin B; Willis NA; Bronson RT; Crowley D; Jacks T
    Cell; 2004 Dec; 119(6):847-60. PubMed ID: 15607980
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Several mutant p53 proteins detected in cancer-prone families with Li-Fraumeni syndrome exhibit transdominant effects on the biochemical properties of the wild-type p53.
    Srivastava S; Wang S; Tong YA; Pirollo K; Chang EH
    Oncogene; 1993 Sep; 8(9):2449-56. PubMed ID: 8361758
    [TBL] [Abstract][Full Text] [Related]  

  • 7. p53 compound heterozygosity in a severely affected child with Li-Fraumeni syndrome.
    Quesnel S; Verselis S; Portwine C; Garber J; White M; Feunteun J; Malkin D; Li FP
    Oncogene; 1999 Jul; 18(27):3970-8. PubMed ID: 10435620
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of the molecular mechanisms involved in the gain of function of a Li-Fraumeni TP53 mutation.
    Capponcelli S; Pedrini E; Cerone MA; Corti V; Fontanesi S; Alessio M; Bachi A; Soddu S; Ribatti D; Picci P; Helman LJ; Cantelli-Forti G; Sangiorgi L
    Hum Mutat; 2005 Aug; 26(2):94-103. PubMed ID: 15977174
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of transgenic mice in identification and characterization of tumour suppressor genes.
    Sharan SK; Bradley A
    Cancer Surv; 1995; 25():143-59. PubMed ID: 8718516
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Association of p53 gene alterations with the expression of antiapoptotic survivin splice variants in breast cancer.
    Végran F; Boidot R; Oudin C; Defrain C; Rebucci M; Lizard-Nacol S
    Oncogene; 2007 Jan; 26(2):290-7. PubMed ID: 16847456
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcriptional activation of p53 by Pitx1.
    Liu DX; Lobie PE
    Cell Death Differ; 2007 Nov; 14(11):1893-907. PubMed ID: 17762884
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mutant p53 gain of oncogenic function: in vivo evidence, mechanism of action and its clinical implications.
    Adhikari AS; Iwakuma T
    Fukuoka Igaku Zasshi; 2009 Jun; 100(6):217-28. PubMed ID: 19670804
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Down-regulation of survivin by ultraviolet C radiation is dependent on p53 and results in G(2)-M arrest in A549 cells.
    Ikeda M; Okamoto I; Tamura K; Satoh T; Yonesaka K; Fukuoka M; Nakagawa K
    Cancer Lett; 2007 Apr; 248(2):292-8. PubMed ID: 16959403
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sirt7 increases stress resistance of cardiomyocytes and prevents apoptosis and inflammatory cardiomyopathy in mice.
    Vakhrusheva O; Smolka C; Gajawada P; Kostin S; Boettger T; Kubin T; Braun T; Bober E
    Circ Res; 2008 Mar; 102(6):703-10. PubMed ID: 18239138
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Caveolin-1 controls cell proliferation and cell death by suppressing expression of the inhibitor of apoptosis protein survivin.
    Torres VA; Tapia JC; Rodríguez DA; Párraga M; Lisboa P; Montoya M; Leyton L; Quest AF
    J Cell Sci; 2006 May; 119(Pt 9):1812-23. PubMed ID: 16608879
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Loss of p53 expression correlates with metastatic phenotype and transcriptional profile in a new mouse model of head and neck cancer.
    Ku TK; Nguyen DC; Karaman M; Gill P; Hacia JG; Crowe DL
    Mol Cancer Res; 2007 Apr; 5(4):351-62. PubMed ID: 17426250
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Negative regulation of chemokine receptor CXCR4 by tumor suppressor p53 in breast cancer cells: implications of p53 mutation or isoform expression on breast cancer cell invasion.
    Mehta SA; Christopherson KW; Bhat-Nakshatri P; Goulet RJ; Broxmeyer HE; Kopelovich L; Nakshatri H
    Oncogene; 2007 May; 26(23):3329-37. PubMed ID: 17130833
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Silent information regulator 2 (SIRT1) attenuates oxidative stress-induced mesangial cell apoptosis via p53 deacetylation.
    Kume S; Haneda M; Kanasaki K; Sugimoto T; Araki S; Isono M; Isshiki K; Uzu T; Kashiwagi A; Koya D
    Free Radic Biol Med; 2006 Jun; 40(12):2175-82. PubMed ID: 16785031
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insights into aging obtained from p53 mutant mouse models.
    Dumble M; Gatza C; Tyner S; Venkatachalam S; Donehower LA
    Ann N Y Acad Sci; 2004 Jun; 1019():171-7. PubMed ID: 15247009
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hypersensitivity to chromium-induced DNA damage correlates with constitutive deregulation of upstream p53 kinases in p21-/- HCT116 colon cancer cells.
    Hill R; Leidal AM; Madureira PA; Gillis LD; Cochrane HK; Waisman DM; Chiu A; Lee PW
    DNA Repair (Amst); 2008 Feb; 7(2):239-52. PubMed ID: 18024214
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.