BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 16450024)

  • 1. Alternating droplet generation and controlled dynamic droplet fusion in microfluidic device for CdS nanoparticle synthesis.
    Hung LH; Choi KM; Tseng WY; Tan YC; Shea KJ; Lee AP
    Lab Chip; 2006 Feb; 6(2):174-8. PubMed ID: 16450024
    [TBL] [Abstract][Full Text] [Related]  

  • 2. K-Channel: A Multifunctional Architecture for Dynamically Reconfigurable Sample Processing in Droplet Microfluidics.
    Doonan SR; Bailey RC
    Anal Chem; 2017 Apr; 89(7):4091-4099. PubMed ID: 28222260
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simultaneous generation of multiple aqueous droplets in a microfluidic device.
    Lorenz RM; Fiorini GS; Jeffries GD; Lim DS; He M; Chiu DT
    Anal Chim Acta; 2008 Dec; 630(2):124-30. PubMed ID: 19012823
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluorescence detection methods for microfluidic droplet platforms.
    Casadevall i Solvas X; Niu X; Leeper K; Cho S; Chang SI; Edel JB; deMello AJ
    J Vis Exp; 2011 Dec; (58):. PubMed ID: 22215381
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reactions in droplets in microfluidic channels.
    Song H; Chen DL; Ismagilov RF
    Angew Chem Int Ed Engl; 2006 Nov; 45(44):7336-56. PubMed ID: 17086584
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A digital microfluidic droplet generator produces self-assembled supramolecular nanoparticles for targeted cell imaging.
    Liu K; Wang H; Chen KJ; Guo F; Lin WY; Chen YC; Phung DL; Tseng HR; Shen CK
    Nanotechnology; 2010 Nov; 21(44):445603. PubMed ID: 20935351
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generation of Size-controlled Poly (ethylene Glycol) Diacrylate Droplets via Semi-3-Dimensional Flow Focusing Microfluidic Devices.
    Wu Y; Qian X; Mi S; Zhang M; Sun S; Wang X
    J Vis Exp; 2018 Jul; (137):. PubMed ID: 30035768
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Droplet-Based Preparation of ZnO-nanostructure Array for Microfluidic Fluorescence Biodetection.
    Wang Z; Yu SX; Shao X; Liu YJ; Wang J; Xie W; Zhao Z; Li X
    ACS Appl Mater Interfaces; 2024 Feb; 16(5):5401-5411. PubMed ID: 38271201
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bead mediated separation of microparticles in droplets.
    Wang S; Sung KJ; Lin XN; Burns MA
    PLoS One; 2017; 12(3):e0173479. PubMed ID: 28282412
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Miniaturized, multiplexed readout of droplet-based microfluidic assays using time-domain modulation.
    Muluneh M; Kim B; Buchsbaum G; Issadore D
    Lab Chip; 2014 Dec; 14(24):4638-46. PubMed ID: 25311204
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced mixing efficiency and reduced droplet size with novel droplet generators.
    Kheirkhah Barzoki A
    Sci Rep; 2024 Feb; 14(1):4711. PubMed ID: 38409482
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automated microfluidic droplet sampling with integrated, mix-and-read immunoassays to resolve endocrine tissue secretion dynamics.
    Li X; Hu J; Easley CJ
    Lab Chip; 2018 Sep; 18(19):2926-2935. PubMed ID: 30112543
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accurate microfluidic sorting of droplets at 30 kHz.
    Sciambi A; Abate AR
    Lab Chip; 2015 Jan; 15(1):47-51. PubMed ID: 25352174
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Study on the Technology of Monodisperse Droplets by a High-Throughput and Instant-Mixing Droplet Microfluidic System.
    Xu R; Zhao S; Nie L; Deng C; Hao S; Zhao X; Li J; Liu B; Ma J
    Materials (Basel); 2021 Mar; 14(5):. PubMed ID: 33799990
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integration of Horizontal and Vertical Microfluidic Modules for Core-Shell Droplet Generation and Chemical Application.
    Yoon DH; Nozaki Y; Tanaka D; Sekiguchi T; Shoji S
    Micromachines (Basel); 2019 Sep; 10(9):. PubMed ID: 31540177
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flexible Toolbox of High-Precision Microfluidic Modules for Versatile Droplet-Based Applications.
    Saupe M; Wiedemeier S; Gastrock G; Römer R; Lemke K
    Micromachines (Basel); 2024 Feb; 15(2):. PubMed ID: 38398978
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Open-atmosphere sustenance of highly volatile attoliter-size droplets on surfaces.
    Galliker P; Schneider J; Rüthemann L; Poulikakos D
    Proc Natl Acad Sci U S A; 2013 Aug; 110(33):13255-60. PubMed ID: 23898173
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiple splitting of droplets using multi-furcating microfluidic channels.
    Li Z; Li L; Liao M; He L; Wu P
    Biomicrofluidics; 2019 Mar; 13(2):024112. PubMed ID: 31065311
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Internal flow in sessile droplets induced by substrate oscillation: towards enhanced mixing and mass transfer in microfluidic systems.
    Zhang T; Zhou P; Simon T; Cui T
    Microsyst Nanoeng; 2024; 10():86. PubMed ID: 38919162
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid and continuous magnetic separation in droplet microfluidic devices.
    Brouzes E; Kruse T; Kimmerling R; Strey HH
    Lab Chip; 2015 Feb; 15(3):908-19. PubMed ID: 25501881
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.