These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 16450026)

  • 1. Characterization of the local temperature in space and time around a developing Drosophila embryo in a microfluidic device.
    Lucchetta EM; Munson MS; Ismagilov RF
    Lab Chip; 2006 Feb; 6(2):185-90. PubMed ID: 16450026
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microfluidic self-assembly of live Drosophila embryos for versatile high-throughput analysis of embryonic morphogenesis.
    Dagani GT; Monzo K; Fakhoury JR; Chen CC; Sisson JC; Zhang X
    Biomed Microdevices; 2007 Oct; 9(5):681-94. PubMed ID: 17508286
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generation of complex concentration profiles by partial diffusive mixing in multi-stream laminar flow.
    Zhou Y; Wang Y; Mukherjee T; Lin Q
    Lab Chip; 2009 May; 9(10):1439-48. PubMed ID: 19417912
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cell stimulus and lysis in a microfluidic device with segmented gas-liquid flow.
    El-Ali J; Gaudet S; Günther A; Sorger PK; Jensen KF
    Anal Chem; 2005 Jun; 77(11):3629-36. PubMed ID: 15924398
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single-layer planar on-chip flow cytometer using microfluidic drifting based three-dimensional (3D) hydrodynamic focusing.
    Mao X; Lin SC; Dong C; Huang TJ
    Lab Chip; 2009 Jun; 9(11):1583-9. PubMed ID: 19458866
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A microfluidic platform for sequential ligand labeling and cell binding analysis.
    Sui G; Lee CC; Kamei K; Li HJ; Wang JY; Wang J; Herschman HR; Tseng HR
    Biomed Microdevices; 2007 Jun; 9(3):301-5. PubMed ID: 17195108
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analytical and numerical study of Joule heating effects on electrokinetically pumped continuous flow PCR chips.
    Gui L; Ren CL
    Langmuir; 2008 Mar; 24(6):2938-46. PubMed ID: 18257592
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid prototyping of microfluidic systems using a PDMS/polymer tape composite.
    Kim J; Surapaneni R; Gale BK
    Lab Chip; 2009 May; 9(9):1290-3. PubMed ID: 19370251
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid prototyping of robust and versatile microfluidic components using adhesive transfer tapes.
    Nath P; Fung D; Kunde YA; Zeytun A; Branch B; Goddard G
    Lab Chip; 2010 Sep; 10(17):2286-91. PubMed ID: 20593077
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numeric simulation of heat transfer and electrokinetic flow in an electroosmosis-based continuous flow PCR chip.
    Gui L; Ren CL
    Anal Chem; 2006 Sep; 78(17):6215-22. PubMed ID: 16944904
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Numerical simulation of polymerization in interdigital multilamination micromixers.
    Serra C; Sary N; Schlatter G; Hadziioannou G; Hessel V
    Lab Chip; 2005 Sep; 5(9):966-73. PubMed ID: 16100581
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A microfluidic method for removal of the zona pellucida from mammalian embryos.
    Zeringue HC; Wheeler MB; Beebe DJ
    Lab Chip; 2005 Jan; 5(1):108-10. PubMed ID: 15616748
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microfluidic device as a new platform for immunofluorescent detection of viruses.
    Liu WT; Zhu L; Qin QW; Zhang Q; Feng H; Ang S
    Lab Chip; 2005 Nov; 5(11):1327-30. PubMed ID: 16234960
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Parameters influencing pulsed flow mixing in microchannels.
    Glasgow I; Lieber S; Aubry N
    Anal Chem; 2004 Aug; 76(16):4825-32. PubMed ID: 15307794
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A biological sensor platform using a pneumatic-valve controlled microfluidic device containing Tetrahymena pyriformis.
    Nam SW; Van Noort D; Yang Y; Park S
    Lab Chip; 2007 May; 7(5):638-40. PubMed ID: 17476385
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Continuous cytometric bead processing within a microfluidic device for bead based sensing platforms.
    Yang S; Undar A; Zahn JD
    Lab Chip; 2007 May; 7(5):588-95. PubMed ID: 17476377
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfluidic systems integrated with two-dimensional surface plasmon resonance phase imaging systems for microarray immunoassay.
    Lee KH; Su YD; Chen SJ; Tseng FG; Lee GB
    Biosens Bioelectron; 2007 Nov; 23(4):466-72. PubMed ID: 17618110
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transport of live yeast and zebrafish embryo on a droplet digital microfluidic platform.
    Son SU; Garrell RL
    Lab Chip; 2009 Aug; 9(16):2398-401. PubMed ID: 19636473
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Study of Joule heating effects on temperature gradient in diverging microchannels for isoelectric focusing applications.
    Kates B; Ren CL
    Electrophoresis; 2006 May; 27(10):1967-76. PubMed ID: 16703632
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of high throughput optical sensor array for on-line pH monitoring in micro-scale cell culture environment.
    Wu MH; Lin JL; Wang J; Cui Z; Cui Z
    Biomed Microdevices; 2009 Feb; 11(1):265-73. PubMed ID: 18830696
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.