These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 16450026)

  • 21. Quantitative determination of glucose transfer between concurrent laminar water streams in a H-shaped microchannel.
    van Leeuwen M; Li X; Krommenhoek EE; Gardeniers H; Ottens M; van der Wielen LA; Heijnen JJ; van Gulik WM
    Biotechnol Prog; 2009; 25(6):1826-32. PubMed ID: 19731331
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Millisecond denaturation dynamics of fluorescent proteins revealed by femtoliter container on micro-thermodevice.
    Arata HF; Gillot F; Nojima T; Fujii T; Fujita H
    Lab Chip; 2008 Sep; 8(9):1436-40. PubMed ID: 18818796
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microfluidic biochip for chemiluminescent detection of allergen-specific antibodies.
    Heyries KA; Loughran MG; Hoffmann D; Homsy A; Blum LJ; Marquette CA
    Biosens Bioelectron; 2008 Jul; 23(12):1812-8. PubMed ID: 18396032
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microfluidic chip to produce temperature jumps for electrophysiology.
    Pennell T; Suchyna T; Wang J; Heo J; Felske JD; Sachs F; Hua SZ
    Anal Chem; 2008 Apr; 80(7):2447-51. PubMed ID: 18302344
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Spectrally resolved flow imaging of fluids inside a microfluidic chip with ultrahigh time resolution.
    Harel E; Pines A
    J Magn Reson; 2008 Aug; 193(2):199-206. PubMed ID: 18538599
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Flow injection based microfluidic device with carbon nanotube electrode for rapid salbutamol detection.
    Karuwan C; Wisitsoraat A; Maturos T; Phokharatkul D; Sappat A; Jaruwongrungsee K; Lomas T; Tuantranont A
    Talanta; 2009 Sep; 79(4):995-1000. PubMed ID: 19615498
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Rapid fabrication of microchannels using microscale plasma activated templating (microPLAT) generated water molds.
    Chao SH; Carlson R; Meldrum DR
    Lab Chip; 2007 May; 7(5):641-3. PubMed ID: 17476386
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electrokinetic microfluidic devices for rapid, low power drug delivery in autonomous microsystems.
    Chung AJ; Kim D; Erickson D
    Lab Chip; 2008 Feb; 8(2):330-8. PubMed ID: 18231674
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Microfluidic chip accomplishing self-fluid replacement using only capillary force and its bioanalytical application.
    Chung KH; Hong JW; Lee DS; Yoon HC
    Anal Chim Acta; 2007 Feb; 585(1):1-10. PubMed ID: 17386640
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microfluidic approach for rapid interfacial tension measurement.
    Xu JH; Li SW; Lan WJ; Luo GS
    Langmuir; 2008 Oct; 24(19):11287-92. PubMed ID: 18785714
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A microfluidic platform for 3-dimensional cell culture and cell-based assays.
    Kim MS; Yeon JH; Park JK
    Biomed Microdevices; 2007 Feb; 9(1):25-34. PubMed ID: 17103048
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Numerical modeling of Joule heating effects in insulator-based dielectrophoresis microdevices.
    Kale A; Patel S; Hu G; Xuan X
    Electrophoresis; 2013 Mar; 34(5):674-83. PubMed ID: 23192532
    [TBL] [Abstract][Full Text] [Related]  

  • 33. "Microfluidic drifting"--implementing three-dimensional hydrodynamic focusing with a single-layer planar microfluidic device.
    Mao X; Waldeisen JR; Huang TJ
    Lab Chip; 2007 Oct; 7(10):1260-2. PubMed ID: 17896008
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Design and testing of a disposable microfluidic chemiluminescent immunoassay for disease biomarkers in human serum samples.
    Bhattacharyya A; Klapperich CM
    Biomed Microdevices; 2007 Apr; 9(2):245-51. PubMed ID: 17165125
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Microfluidic device for immunoassays based on surface plasmon resonance imaging.
    Luo Y; Yu F; Zare RN
    Lab Chip; 2008 May; 8(5):694-700. PubMed ID: 18432338
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Pumping fluids in microfluidic systems using the elastic deformation of poly(dimethylsiloxane).
    Weibel DB; Siegel AC; Lee A; George AH; Whitesides GM
    Lab Chip; 2007 Dec; 7(12):1832-6. PubMed ID: 18030408
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Recirculating flow accelerates DNA microarray hybridization in a microfluidic device.
    Lee HH; Smoot J; McMurray Z; Stahl DA; Yager P
    Lab Chip; 2006 Sep; 6(9):1163-70. PubMed ID: 16929395
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Electroosmotic flow patterning using microfluidic delay loops.
    Schönfeld F; Hardt S; Böhm M; Püschl RJ; Walder M; Wenclawiak B
    Lab Chip; 2006 Dec; 6(12):1525-9. PubMed ID: 17203156
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A method for dynamic system characterization using hydraulic series resistance.
    Kim D; Chesler NC; Beebe DJ
    Lab Chip; 2006 May; 6(5):639-44. PubMed ID: 16652179
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Chiral separation of FITC-labeled amino acids with gel electrochromatography using a polydimethylsiloxane microfluidic device.
    Zeng HL; Li H; Wang X; Lin JM
    J Capill Electrophor Microchip Technol; 2007; 10(1-2):19-24. PubMed ID: 17685238
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.