These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 16450026)

  • 61. A control method for steering individual particles inside liquid droplets actuated by electrowetting.
    Walker S; Shapiro B
    Lab Chip; 2005 Dec; 5(12):1404-7. PubMed ID: 16286973
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Quantitative kinetic analysis in a microfluidic device using frequency-domain fluorescence lifetime imaging.
    Matthews SM; Elder AD; Yunus K; Kaminski CF; Brennan CM; Fisher AC
    Anal Chem; 2007 Jun; 79(11):4101-9. PubMed ID: 17472341
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Continuous flow separation of particles within an asymmetric microfluidic device.
    Zhang X; Cooper JM; Monaghan PB; Haswell SJ
    Lab Chip; 2006 Apr; 6(4):561-6. PubMed ID: 16572220
    [TBL] [Abstract][Full Text] [Related]  

  • 64. A microfluidic system in combination with optical tweezers for analyzing rapid and reversible cytological alterations in single cells upon environmental changes.
    Eriksson E; Enger J; Nordlander B; Erjavec N; Ramser K; Goksör M; Hohmann S; Nyström T; Hanstorp D
    Lab Chip; 2007 Jan; 7(1):71-6. PubMed ID: 17180207
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Design, fabrication and characterization of nano-filters in silicon microfluidic channels based on MEMS technology.
    Chen X; Cui D; Chen J
    Electrophoresis; 2009 Sep; 30(18):3168-73. PubMed ID: 19722199
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Electrochemical detection in a microfluidic device of oxidative stress generated by macrophage cells.
    Amatore C; Arbault S; Chen Y; Crozatier C; Tapsoba I
    Lab Chip; 2007 Feb; 7(2):233-8. PubMed ID: 17268626
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Micro-droplet detection and characterization using thermal responses.
    Yi N; Park BK; Kim D; Park J
    Lab Chip; 2011 Jul; 11(14):2378-84. PubMed ID: 21655604
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Integrated two-step gene synthesis in a microfluidic device.
    Huang MC; Ye H; Kuan YK; Li MH; Ying JY
    Lab Chip; 2009 Jan; 9(2):276-85. PubMed ID: 19107285
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Rapid detection of genetically modified organisms on a continuous-flow polymerase chain reaction microfluidics.
    Li Y; Xing D; Zhang C
    Anal Biochem; 2009 Feb; 385(1):42-9. PubMed ID: 19010299
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Development of a microfluidic biochip for online monitoring of fungal biofilm dynamics.
    Richter L; Stepper C; Mak A; Reinthaler A; Heer R; Kast M; Brückl H; Ertl P
    Lab Chip; 2007 Dec; 7(12):1723-31. PubMed ID: 18030393
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Microfluidic platforms for lab-on-a-chip applications.
    Haeberle S; Zengerle R
    Lab Chip; 2007 Sep; 7(9):1094-110. PubMed ID: 17713606
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Tracheal branching morphogenesis in Drosophila: new insights into cell behaviour and organ architecture.
    Affolter M; Caussinus E
    Development; 2008 Jun; 135(12):2055-64. PubMed ID: 18480161
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Microfluidic platform for hepatitis B viral replication study.
    Sodunke TR; Bouchard MJ; Noh HM
    Biomed Microdevices; 2008 Jun; 10(3):393-402. PubMed ID: 18165913
    [TBL] [Abstract][Full Text] [Related]  

  • 74. An agarose-based microfluidic platform with a gradient buffer for 3D chemotaxis studies.
    Haessler U; Kalinin Y; Swartz MA; Wu M
    Biomed Microdevices; 2009 Aug; 11(4):827-35. PubMed ID: 19343497
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Hydrodynamically tunable optofluidic cylindrical microlens.
    Mao X; Waldeisen JR; Juluri BK; Huang TJ
    Lab Chip; 2007 Oct; 7(10):1303-8. PubMed ID: 17896014
    [TBL] [Abstract][Full Text] [Related]  

  • 76. "On the fly" continuous generation of alginate fibers using a microfluidic device.
    Shin SJ; Park JY; Lee JY; Park H; Park YD; Lee KB; Whang CM; Lee SH
    Langmuir; 2007 Aug; 23(17):9104-8. PubMed ID: 17637008
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Separation of plasma from whole human blood in a continuous cross-flow in a molded microfluidic device.
    VanDelinder V; Groisman A
    Anal Chem; 2006 Jun; 78(11):3765-71. PubMed ID: 16737235
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Electrokinetic protein preconcentration using a simple glass/poly(dimethylsiloxane) microfluidic chip.
    Kim SM; Burns MA; Hasselbrink EF
    Anal Chem; 2006 Jul; 78(14):4779-85. PubMed ID: 16841895
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Prevention of air bubble formation in a microfluidic perfusion cell culture system using a microscale bubble trap.
    Sung JH; Shuler ML
    Biomed Microdevices; 2009 Aug; 11(4):731-8. PubMed ID: 19212816
    [TBL] [Abstract][Full Text] [Related]  

  • 80. An integrated microfluidic culture device for quantitative analysis of human embryonic stem cells.
    Kamei K; Guo S; Yu ZT; Takahashi H; Gschweng E; Suh C; Wang X; Tang J; McLaughlin J; Witte ON; Lee KB; Tseng HR
    Lab Chip; 2009 Feb; 9(4):555-63. PubMed ID: 19190791
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.