These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 16450122)
1. In vitro assays for adhesion and migration of osteoblastic cells (Saos-2) on titanium surfaces. Li CY; Gao SY; Terashita T; Shimokawa T; Kawahara H; Matsuda S; Kobayashi N Cell Tissue Res; 2006 Jun; 324(3):369-75. PubMed ID: 16450122 [TBL] [Abstract][Full Text] [Related]
2. The initial attachment and subsequent behavior of osteoblastic cells and oral epithelial cells on titanium. Goto T; Yoshinari M; Kobayashi S; Tanaka T Biomed Mater Eng; 2004; 14(4):537-44. PubMed ID: 15472400 [TBL] [Abstract][Full Text] [Related]
3. Surface composition of orthopaedic implant metals regulates cell attachment, spreading, and cytoskeletal organization of primary human osteoblasts in vitro. Sinha RK; Morris F; Shah SA; Tuan RS Clin Orthop Relat Res; 1994 Aug; (305):258-72. PubMed ID: 8050238 [TBL] [Abstract][Full Text] [Related]
4. The enhanced characteristics of osteoblast adhesion to photofunctionalized nanoscale TiO2 layers on biomaterials surfaces. Miyauchi T; Yamada M; Yamamoto A; Iwasa F; Suzawa T; Kamijo R; Baba K; Ogawa T Biomaterials; 2010 May; 31(14):3827-39. PubMed ID: 20153521 [TBL] [Abstract][Full Text] [Related]
5. Kinetic study of the expression of beta-catenin, actin and vinculin during osteoblastic adhesion on grooved titanium substrates. Anselme K; Bigerelle M; Loison I; Noël B; Hardouin P Biomed Mater Eng; 2004; 14(4):545-56. PubMed ID: 15472401 [TBL] [Abstract][Full Text] [Related]
6. Surface modifications and cell-materials interactions with anodized Ti. Das K; Bose S; Bandyopadhyay A Acta Biomater; 2007 Jul; 3(4):573-85. PubMed ID: 17320494 [TBL] [Abstract][Full Text] [Related]
7. Comparison of osteoblast spreading on microstructured dental implant surfaces and cell behaviour in an explant model of osseointegration. A scanning electron microscopic study. Sammons RL; Lumbikanonda N; Gross M; Cantzler P Clin Oral Implants Res; 2005 Dec; 16(6):657-66. PubMed ID: 16307572 [TBL] [Abstract][Full Text] [Related]
8. Time-dependent morphology and adhesion of osteoblastic cells on titanium model surfaces featuring scale-resolved topography. Zinger O; Anselme K; Denzer A; Habersetzer P; Wieland M; Jeanfils J; Hardouin P; Landolt D Biomaterials; 2004 Jun; 25(14):2695-711. PubMed ID: 14962549 [TBL] [Abstract][Full Text] [Related]
9. Quantitative kinetic analysis of gene expression during human osteoblastic adhesion on orthopaedic materials. Rouahi M; Champion E; Hardouin P; Anselme K Biomaterials; 2006 May; 27(14):2829-44. PubMed ID: 16427124 [TBL] [Abstract][Full Text] [Related]
10. Effects of calcium ion implantation on human bone cell interaction with titanium. Nayab SN; Jones FH; Olsen I Biomaterials; 2005 Aug; 26(23):4717-27. PubMed ID: 15763251 [TBL] [Abstract][Full Text] [Related]
11. Adhesion of human osteoblasts to titanium: A morpho-functional analysis with confocal microscopy. Uggeri J; Guizzardi S; Scandroglio R; Gatti R Micron; 2010 Apr; 41(3):210-9. PubMed ID: 19942444 [TBL] [Abstract][Full Text] [Related]
12. Effect of chemically modified titanium surfaces on protein adsorption and osteoblast precursor cell behavior. Protivínský J; Appleford M; Strnad J; Helebrant A; Ong JL Int J Oral Maxillofac Implants; 2007; 22(4):542-50. PubMed ID: 17929514 [TBL] [Abstract][Full Text] [Related]
13. Effect of three distinct treatments of titanium surface on osteoblast attachment, proliferation, and differentiation. Sader MS; Balduino A; Soares Gde A; Borojevic R Clin Oral Implants Res; 2005 Dec; 16(6):667-75. PubMed ID: 16307573 [TBL] [Abstract][Full Text] [Related]
14. In vitro biocompatibility of an ultrafine grained zirconium. Saldaña L; Méndez-Vilas A; Jiang L; Multigner M; González-Carrasco JL; Pérez-Prado MT; González-Martín ML; Munuera L; Vilaboa N Biomaterials; 2007 Oct; 28(30):4343-54. PubMed ID: 17624424 [TBL] [Abstract][Full Text] [Related]
15. The design of novel nanostructures on titanium by solution chemistry for an improved osteoblast response. Divya Rani VV; Manzoor K; Menon D; Selvamurugan N; Nair SV Nanotechnology; 2009 May; 20(19):195101. PubMed ID: 19420629 [TBL] [Abstract][Full Text] [Related]
16. The effect of titanium surface roughening on protein absorption, cell attachment, and cell spreading. Nishimoto SK; Nishimoto M; Park SW; Lee KM; Kim HS; Koh JT; Ong JL; Liu Y; Yang Y Int J Oral Maxillofac Implants; 2008; 23(4):675-80. PubMed ID: 18807564 [TBL] [Abstract][Full Text] [Related]
17. Polishing and coating carbon fiber-reinforced carbon composites with a carbon-titanium layer enhances adhesion and growth of osteoblast-like MG63 cells and vascular smooth muscle cells in vitro. Bacáková L; Starý V; Kofronová O; Lisá V J Biomed Mater Res; 2001 Mar; 54(4):567-78. PubMed ID: 11426603 [TBL] [Abstract][Full Text] [Related]
18. Surface analyses of micro-arc oxidized and hydrothermally treated titanium and effect on osteoblast behavior. Zhang YM; Bataillon-Linez P; Huang P; Zhao YM; Han Y; Traisnel M; Xu KW; Hildebrand HF J Biomed Mater Res A; 2004 Feb; 68(2):383-91. PubMed ID: 14704981 [TBL] [Abstract][Full Text] [Related]
19. Control of focal adhesion dynamics by material surface characteristics. Diener A; Nebe B; Lüthen F; Becker P; Beck U; Neumann HG; Rychly J Biomaterials; 2005 Feb; 26(4):383-92. PubMed ID: 15275812 [TBL] [Abstract][Full Text] [Related]
20. New experimental model to study the bone interface of endosseous implants: an in vitro three-dimensional model of cell culture. Li D; Liu B Implant Dent; 1999; 8(2):120-5. PubMed ID: 10635153 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]