These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 16451737)

  • 1. Detection of compound mode of action by computational integration of whole-genome measurements and genetic perturbations.
    Hallén K; Björkegren J; Tegnér J
    BMC Bioinformatics; 2006 Feb; 7():51. PubMed ID: 16451737
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of sample set enrichment scores: assaying the enrichment of sets of genes for individual samples in genome-wide expression profiles.
    Edelman E; Porrello A; Guinney J; Balakumaran B; Bild A; Febbo PG; Mukherjee S
    Bioinformatics; 2006 Jul; 22(14):e108-16. PubMed ID: 16873460
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Safety and nutritional assessment of GM plants and derived food and feed: the role of animal feeding trials.
    EFSA GMO Panel Working Group on Animal Feeding Trials
    Food Chem Toxicol; 2008 Mar; 46 Suppl 1():S2-70. PubMed ID: 18328408
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The mode-of-action by network identification (MNI) algorithm: a network biology approach for molecular target identification.
    Xing H; Gardner TS
    Nat Protoc; 2006; 1(6):2551-4. PubMed ID: 17406508
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome-wide prediction of transcriptional regulatory elements of human promoters using gene expression and promoter analysis data.
    Kim SY; Kim Y
    BMC Bioinformatics; 2006 Jul; 7():330. PubMed ID: 16817975
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Systematic discovery of functional modules and context-specific functional annotation of human genome.
    Huang Y; Li H; Hu H; Yan X; Waterman MS; Huang H; Zhou XJ
    Bioinformatics; 2007 Jul; 23(13):i222-9. PubMed ID: 17646300
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alternative pathway approach for automating analysis and validation of cell perturbation networks and design of perturbation experiments.
    Gong Y; Zhang Z
    Ann N Y Acad Sci; 2007 Dec; 1115():267-85. PubMed ID: 17925355
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Development of antituberculous drugs: current status and future prospects].
    Tomioka H; Namba K
    Kekkaku; 2006 Dec; 81(12):753-74. PubMed ID: 17240921
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Learning regulatory programs that accurately predict differential expression with MEDUSA.
    Kundaje A; Lianoglou S; Li X; Quigley D; Arias M; Wiggins CH; Zhang L; Leslie C
    Ann N Y Acad Sci; 2007 Dec; 1115():178-202. PubMed ID: 17934055
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ensemble learning of genetic networks from time-series expression data.
    Nam D; Yoon SH; Kim JF
    Bioinformatics; 2007 Dec; 23(23):3225-31. PubMed ID: 17977884
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gene regulatory network inference: data integration in dynamic models-a review.
    Hecker M; Lambeck S; Toepfer S; van Someren E; Guthke R
    Biosystems; 2009 Apr; 96(1):86-103. PubMed ID: 19150482
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of whole-genome association scans in disease gene identification, drug discovery and development.
    Roses AD; St Jean PL; Ehm MG
    IDrugs; 2007 Nov; 10(11):797-804. PubMed ID: 17968762
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inferring pairwise regulatory relationships from multiple time series datasets.
    Shi Y; Mitchell T; Bar-Joseph Z
    Bioinformatics; 2007 Mar; 23(6):755-63. PubMed ID: 17237067
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Time-varying modeling of gene expression regulatory networks using the wavelet dynamic vector autoregressive method.
    Fujita A; Sato JR; Garay-Malpartida HM; Morettin PA; Sogayar MC; Ferreira CE
    Bioinformatics; 2007 Jul; 23(13):1623-30. PubMed ID: 17463021
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome-scale analysis of in vivo spatiotemporal promoter activity in Caenorhabditis elegans.
    Dupuy D; Bertin N; Hidalgo CA; Venkatesan K; Tu D; Lee D; Rosenberg J; Svrzikapa N; Blanc A; Carnec A; Carvunis AR; Pulak R; Shingles J; Reece-Hoyes J; Hunt-Newbury R; Viveiros R; Mohler WA; Tasan M; Roth FP; Le Peuch C; Hope IA; Johnsen R; Moerman DG; Barabási AL; Baillie D; Vidal M
    Nat Biotechnol; 2007 Jun; 25(6):663-8. PubMed ID: 17486083
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How to decide which are the most pertinent overly-represented features during gene set enrichment analysis.
    Barriot R; Sherman DJ; Dutour I
    BMC Bioinformatics; 2007 Sep; 8():332. PubMed ID: 17848190
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inferring gene networks from steady-state response to single-gene perturbations.
    Brazhnik P
    J Theor Biol; 2005 Dec; 237(4):427-40. PubMed ID: 15975609
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A graph-based approach to systematically reconstruct human transcriptional regulatory modules.
    Yan X; Mehan MR; Huang Y; Waterman MS; Yu PS; Zhou XJ
    Bioinformatics; 2007 Jul; 23(13):i577-86. PubMed ID: 17646346
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nested effects models for high-dimensional phenotyping screens.
    Markowetz F; Kostka D; Troyanskaya OG; Spang R
    Bioinformatics; 2007 Jul; 23(13):i305-12. PubMed ID: 17646311
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detecting biological associations between genes based on the theory of phase synchronization.
    Kim CS; Riikonen P; Salakoski T
    Biosystems; 2008 May; 92(2):99-113. PubMed ID: 18289772
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.