BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 16452118)

  • 1. The relationship between chain connectivity and domain stability in the equilibrium and kinetic folding mechanisms of dihydrofolate reductase from E.coli.
    Svensson AK; Zitzewitz JA; Matthews CR; Smith VF
    Protein Eng Des Sel; 2006 Apr; 19(4):175-85. PubMed ID: 16452118
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Testing the role of chain connectivity on the stability and structure of dihydrofolate reductase from E. coli: fragment complementation and circular permutation reveal stable, alternatively folded forms.
    Smith VF; Matthews CR
    Protein Sci; 2001 Jan; 10(1):116-28. PubMed ID: 11266600
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multistate equilibrium unfolding of Escherichia coli dihydrofolate reductase: thermodynamic and spectroscopic description of the native, intermediate, and unfolded ensembles.
    Ionescu RM; Smith VF; O'Neill JC; Matthews CR
    Biochemistry; 2000 Aug; 39(31):9540-50. PubMed ID: 10924151
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Native Escherichia coli and murine dihydrofolate reductases contain late-folding non-native structures.
    Clark AC; Frieden C
    J Mol Biol; 1999 Jan; 285(4):1765-76. PubMed ID: 9917410
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Systematic circular permutation of an entire protein reveals essential folding elements.
    Iwakura M; Nakamura T; Yamane C; Maki K
    Nat Struct Biol; 2000 Jul; 7(7):580-5. PubMed ID: 10876245
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of the difference in the unfolded-state ensemble on the folding of Escherichia coli dihydrofolate reductase.
    Arai M; Kataoka M; Kuwajima K; Matthews CR; Iwakura M
    J Mol Biol; 2003 Jun; 329(4):779-91. PubMed ID: 12787677
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The coordination of the isomerization of a conserved non-prolyl cis peptide bond with the rate-limiting steps in the folding of dihydrofolate reductase.
    Svensson AK; O'Neill JC; Matthews CR
    J Mol Biol; 2003 Feb; 326(2):569-83. PubMed ID: 12559923
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure of a partially unfolded form of Escherichia coli dihydrofolate reductase provides insight into its folding pathway.
    Kasper JR; Liu PF; Park C
    Protein Sci; 2014 Dec; 23(12):1728-37. PubMed ID: 25252157
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microsecond subdomain folding in dihydrofolate reductase.
    Arai M; Iwakura M; Matthews CR; Bilsel O
    J Mol Biol; 2011 Jul; 410(2):329-42. PubMed ID: 21554889
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of circular permutations on transient partial unfolding in proteins.
    Chen C; Yun JH; Kim JH; Park C
    Protein Sci; 2016 Aug; 25(8):1483-91. PubMed ID: 27164316
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Circular permutation analysis as a method for distinction of functional elements in the M20 loop of Escherichia coli dihydrofolate reductase.
    Nakamura T; Iwakura M
    J Biol Chem; 1999 Jul; 274(27):19041-7. PubMed ID: 10383405
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Folding pathway of a multidomain protein depends on its topology of domain connectivity.
    Inanami T; Terada TP; Sasai M
    Proc Natl Acad Sci U S A; 2014 Nov; 111(45):15969-74. PubMed ID: 25267632
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly divergent dihydrofolate reductases conserve complex folding mechanisms.
    Wallace LA; Robert Matthews C
    J Mol Biol; 2002 Jan; 315(2):193-211. PubMed ID: 11779239
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Localized, stereochemically sensitive hydrophobic packing in an early folding intermediate of dihydrofolate reductase from Escherichia coli.
    O'Neill JC; Robert Matthews C
    J Mol Biol; 2000 Jan; 295(4):737-44. PubMed ID: 10656786
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Probing minimal independent folding units in dihydrofolate reductase by molecular dissection.
    Gegg CV; Bowers KE; Matthews CR
    Protein Sci; 1997 Sep; 6(9):1885-92. PubMed ID: 9300488
    [TBL] [Abstract][Full Text] [Related]  

  • 16. GroEL-mediated folding of structurally homologous dihydrofolate reductases.
    Clark AC; Frieden C
    J Mol Biol; 1997 May; 268(2):512-25. PubMed ID: 9159487
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermal unfolding molecular dynamics simulation of Escherichia coli dihydrofolate reductase: thermal stability of protein domains and unfolding pathway.
    Sham YY; Ma B; Tsai CJ; Nussinov R
    Proteins; 2002 Feb; 46(3):308-20. PubMed ID: 11835506
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Collapse of parallel folding channels in dihydrofolate reductase from Escherichia coli by site-directed mutagenesis.
    Iwakura M; Jones BE; Falzone CJ; Matthews CR
    Biochemistry; 1993 Dec; 32(49):13566-74. PubMed ID: 8257692
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cyclophilin-promoted folding of mouse dihydrofolate reductase does not include the slow conversion of the late-folding intermediate to the active enzyme.
    von Ahsen O; Lim JH; Caspers P; Martin F; Schönfeld HJ; Rassow J; Pfanner N
    J Mol Biol; 2000 Mar; 297(3):809-18. PubMed ID: 10731431
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetic folding of Haloferax volcanii and Escherichia coli dihydrofolate reductases: haloadaptation by unfolded state destabilization at high ionic strength.
    Gloss LM; Topping TB; Binder AK; Lohman JR
    J Mol Biol; 2008 Mar; 376(5):1451-62. PubMed ID: 18207162
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.