BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 16452168)

  • 1. Roles of static and dynamic domains in stability and catalysis of adenylate kinase.
    Bae E; Phillips GN
    Proc Natl Acad Sci U S A; 2006 Feb; 103(7):2132-7. PubMed ID: 16452168
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effectiveness and limitations of local structural entropy optimization in the thermal stabilization of mesophilic and thermophilic adenylate kinases.
    Moon S; Bannen RM; Rutkoski TJ; Phillips GN; Bae E
    Proteins; 2014 Oct; 82(10):2631-42. PubMed ID: 24931334
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Zinc, a novel structural element found in the family of bacterial adenylate kinases.
    Glaser P; Presecan E; Delepierre M; Surewicz WK; Mantsch HH; Bârzu O; Gilles AM
    Biochemistry; 1992 Mar; 31(12):3038-43. PubMed ID: 1554691
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identifying and engineering ion pairs in adenylate kinases. Insights from molecular dynamics simulations of thermophilic and mesophilic homologues.
    Bae E; Phillips GN
    J Biol Chem; 2005 Sep; 280(35):30943-8. PubMed ID: 15995248
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mesophilic and hyperthermophilic adenylate kinases differ in their tolerance to random fragmentation.
    Segall-Shapiro TH; Nguyen PQ; Dos Santos ED; Subedi S; Judd J; Suh J; Silberg JJ
    J Mol Biol; 2011 Feb; 406(1):135-48. PubMed ID: 21145325
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structures and analysis of highly homologous psychrophilic, mesophilic, and thermophilic adenylate kinases.
    Bae E; Phillips GN
    J Biol Chem; 2004 Jul; 279(27):28202-8. PubMed ID: 15100224
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An adaptive mutation in adenylate kinase that increases organismal fitness is linked to stability-activity trade-offs.
    Couñago R; Wilson CJ; Peña MI; Wittung-Stafshede P; Shamoo Y
    Protein Eng Des Sel; 2008 Jan; 21(1):19-27. PubMed ID: 18093993
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo molecular evolution reveals biophysical origins of organismal fitness.
    Couñago R; Chen S; Shamoo Y
    Mol Cell; 2006 May; 22(4):441-9. PubMed ID: 16713575
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biochemical and structural properties of chimeras constructed by exchange of cofactor-binding domains in alcohol dehydrogenases from thermophilic and mesophilic microorganisms.
    Goihberg E; Peretz M; Tel-Or S; Dym O; Shimon L; Frolow F; Burstein Y
    Biochemistry; 2010 Mar; 49(9):1943-53. PubMed ID: 20102159
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-resolution X-ray structure of the DNA-binding protein HU from the hyper-thermophilic Thermotoga maritima and the determinants of its thermostability.
    Christodoulou E; Rypniewski WR; Vorgias CR
    Extremophiles; 2003 Apr; 7(2):111-22. PubMed ID: 12664263
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Folding funnels and conformational transitions via hinge-bending motions.
    Kumar S; Ma B; Tsai CJ; Wolfson H; Nussinov R
    Cell Biochem Biophys; 1999; 31(2):141-64. PubMed ID: 10593256
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamics in Thermotoga neapolitana adenylate kinase: 15N relaxation and hydrogen-deuterium exchange studies of a hyperthermophilic enzyme highly active at 30 degrees C.
    Krishnamurthy H; Munro K; Yan H; Vieille C
    Biochemistry; 2009 Mar; 48(12):2723-39. PubMed ID: 19220019
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Understanding thermal adaptation of enzymes through the multistate rational design and stability prediction of 100 adenylate kinases.
    Howell SC; Inampudi KK; Bean DP; Wilson CJ
    Structure; 2014 Feb; 22(2):218-29. PubMed ID: 24361272
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Probing catalytic hinge bending motions in thermolysin-like proteases by glycine --> alanine mutations.
    Veltman OR; Eijsink VG; Vriend G; de Kreij A; Venema G; Van den Burg B
    Biochemistry; 1998 Apr; 37(15):5305-11. PubMed ID: 9548762
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distinct metal dependence for catalytic and structural functions in the L-arabinose isomerases from the mesophilic Bacillus halodurans and the thermophilic Geobacillus stearothermophilus.
    Lee DW; Choe EA; Kim SB; Eom SH; Hong YH; Lee SJ; Lee HS; Lee DY; Pyun YR
    Arch Biochem Biophys; 2005 Feb; 434(2):333-43. PubMed ID: 15639234
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural and dynamic studies on ligand-free adenylate kinase from Mycobacterium tuberculosis revealed a closed conformation that can be related to the reduced catalytic activity.
    Miron S; Munier-Lehmann H; Craescu CT
    Biochemistry; 2004 Jan; 43(1):67-77. PubMed ID: 14705932
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Linkage between dynamics and catalysis in a thermophilic-mesophilic enzyme pair.
    Wolf-Watz M; Thai V; Henzler-Wildman K; Hadjipavlou G; Eisenmesser EZ; Kern D
    Nat Struct Mol Biol; 2004 Oct; 11(10):945-9. PubMed ID: 15334070
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Zinc chelation and structural stability of adenylate kinase from Bacillus subtilis.
    Perrier V; Surewicz WK; Glaser P; Martineau L; Craescu CT; Fabian H; Mantsch HH; Bârzu O; Gilles AM
    Biochemistry; 1994 Aug; 33(33):9960-7. PubMed ID: 8061005
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolutionary fates within a microbial population highlight an essential role for protein folding during natural selection.
    Peña MI; Davlieva M; Bennett MR; Olson JS; Shamoo Y
    Mol Syst Biol; 2010 Jul; 6():387. PubMed ID: 20631681
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alkaline pH-dependent differential unfolding characteristics of mesophilic and thermophilic homologs of dimeric serine hydroxymethyltransferase.
    Bhatt AN; Bhakuni V; Kumar A; Khan MY; Siddiqi MI
    Biochim Biophys Acta; 2010 Jun; 1804(6):1294-300. PubMed ID: 20152942
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.