These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 16452419)

  • 1. Disruption of the operon encoding Ehb hydrogenase limits anabolic CO2 assimilation in the archaeon Methanococcus maripaludis.
    Porat I; Kim W; Hendrickson EL; Xia Q; Zhang Y; Wang T; Taub F; Moore BC; Anderson IJ; Hackett M; Leigh JA; Whitman WB
    J Bacteriol; 2006 Feb; 188(4):1373-80. PubMed ID: 16452419
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The importance of porE and porF in the anabolic pyruvate oxidoreductase of Methanococcus maripaludis.
    Lin W; Whitman WB
    Arch Microbiol; 2004 Jan; 181(1):68-73. PubMed ID: 14655002
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of energy-conserving hydrogenase B in Methanococcus maripaludis.
    Major TA; Liu Y; Whitman WB
    J Bacteriol; 2010 Aug; 192(15):4022-30. PubMed ID: 20511510
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Methanobacterium thermoautotrophicum encodes two multisubunit membrane-bound [NiFe] hydrogenases. Transcription of the operons and sequence analysis of the deduced proteins.
    Tersteegen A; Hedderich R
    Eur J Biochem; 1999 Sep; 264(3):930-43. PubMed ID: 10491142
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unleashing hydrogenase activity in carbon monoxide dehydrogenase/acetyl-CoA synthase and pyruvate:ferredoxin oxidoreductase.
    Menon S; Ragsdale SW
    Biochemistry; 1996 Dec; 35(49):15814-21. PubMed ID: 8961945
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of genetic approaches for the methane-producing archaebacterium Methanococcus maripaludis.
    Whitman WB; Tumbula DL; Yu JP; Kim W
    Biofactors; 1997; 6(1):37-46. PubMed ID: 9233538
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic processes of Methanococcus maripaludis and potential applications.
    Goyal N; Zhou Z; Karimi IA
    Microb Cell Fact; 2016 Jun; 15(1):107. PubMed ID: 27286964
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Purification and catalytic properties of Ech hydrogenase from Methanosarcina barkeri.
    Meuer J; Bartoschek S; Koch J; Künkel A; Hedderich R
    Eur J Biochem; 1999 Oct; 265(1):325-35. PubMed ID: 10491189
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of formate dehydrogenase activity in Methanococcus thermolithotrophicus.
    Sparling R; Daniels L
    J Bacteriol; 1990 Mar; 172(3):1464-9. PubMed ID: 2106511
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein complexing in a methanogen suggests electron bifurcation and electron delivery from formate to heterodisulfide reductase.
    Costa KC; Wong PM; Wang T; Lie TJ; Dodsworth JA; Swanson I; Burn JA; Hackett M; Leigh JA
    Proc Natl Acad Sci U S A; 2010 Jun; 107(24):11050-5. PubMed ID: 20534465
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formate-dependent H2 production by the mesophilic methanogen Methanococcus maripaludis.
    Lupa B; Hendrickson EL; Leigh JA; Whitman WB
    Appl Environ Microbiol; 2008 Nov; 74(21):6584-90. PubMed ID: 18791018
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrogenase-independent uptake and metabolism of electrons by the archaeon Methanococcus maripaludis.
    Lohner ST; Deutzmann JS; Logan BE; Leigh J; Spormann AM
    ISME J; 2014 Aug; 8(8):1673-81. PubMed ID: 24844759
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intracellular pyruvate flux in the methane-producing archaeon Methanococcus maripaludis.
    Yang YL; Glushka JN; Whitman WB
    Arch Microbiol; 2002 Dec; 178(6):493-8. PubMed ID: 12420171
    [TBL] [Abstract][Full Text] [Related]  

  • 14. H2-independent growth of the hydrogenotrophic methanogen Methanococcus maripaludis.
    Costa KC; Lie TJ; Jacobs MA; Leigh JA
    mBio; 2013 Feb; 4(2):. PubMed ID: 23443005
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Roles of coenzyme F420-reducing hydrogenases and hydrogen- and F420-dependent methylenetetrahydromethanopterin dehydrogenases in reduction of F420 and production of hydrogen during methanogenesis.
    Hendrickson EL; Leigh JA
    J Bacteriol; 2008 Jul; 190(14):4818-21. PubMed ID: 18487331
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic, Biochemical, and Molecular Characterization of Methanosarcina barkeri Mutants Lacking Three Distinct Classes of Hydrogenase.
    Mand TD; Kulkarni G; Metcalf WW
    J Bacteriol; 2018 Oct; 200(20):. PubMed ID: 30012731
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence that carbon monoxide is an obligatory intermediate in anaerobic acetyl-CoA synthesis.
    Menon S; Ragsdale SW
    Biochemistry; 1996 Sep; 35(37):12119-25. PubMed ID: 8810918
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phenotypic evidence that the function of the [Fe]-hydrogenase Hmd in Methanococcus maripaludis requires seven hcg (hmd co-occurring genes) but not hmdII.
    Lie TJ; Costa KC; Pak D; Sakesan V; Leigh JA
    FEMS Microbiol Lett; 2013 Jun; 343(2):156-60. PubMed ID: 23551135
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flux measurements and maintenance energy for carbon dioxide utilization by Methanococcus maripaludis.
    Goyal N; Padhiary M; Karimi IA; Zhou Z
    Microb Cell Fact; 2015 Sep; 14():146. PubMed ID: 26376868
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Performance of different methanogenic species for the microbial electrosynthesis of methane from carbon dioxide.
    Mayer F; Enzmann F; Lopez AM; Holtmann D
    Bioresour Technol; 2019 Oct; 289():121706. PubMed ID: 31279320
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.