These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
183 related articles for article (PubMed ID: 16452439)
1. Genetic and transcriptional analysis of the siderophore malleobactin biosynthesis and transport genes in the human pathogen Burkholderia pseudomallei K96243. Alice AF; López CS; Lowe CA; Ledesma MA; Crosa JH J Bacteriol; 2006 Feb; 188(4):1551-66. PubMed ID: 16452439 [TBL] [Abstract][Full Text] [Related]
2. The Global Regulator MftR Controls Virulence and Siderophore Production in Burkholderia thailandensis. Thapa SS; Al-Tohamy A; Grove A J Bacteriol; 2022 Nov; 204(11):e0023722. PubMed ID: 36286517 [TBL] [Abstract][Full Text] [Related]
3. Nitro versus hydroxamate in siderophores of pathogenic bacteria: effect of missing hydroxylamine protection in malleobactin biosynthesis. Franke J; Ishida K; Ishida-Ito M; Hertweck C Angew Chem Int Ed Engl; 2013 Aug; 52(32):8271-5. PubMed ID: 23821334 [No Abstract] [Full Text] [Related]
4. Burkholderia pseudomallei known siderophores and hemin uptake are dispensable for lethal murine melioidosis. Kvitko BH; Goodyear A; Propst KL; Dow SW; Schweizer HP PLoS Negl Trop Dis; 2012; 6(6):e1715. PubMed ID: 22745846 [TBL] [Abstract][Full Text] [Related]
5. Genetic and Functional Analysis of the Biosynthesis of a Non-Ribosomal Peptide Siderophore in Burkholderia xenovorans LB400. Vargas-Straube MJ; Cámara B; Tello M; Montero-Silva F; Cárdenas F; Seeger M PLoS One; 2016; 11(3):e0151273. PubMed ID: 26963250 [TBL] [Abstract][Full Text] [Related]
6. Burkholderia genome mining for nonribosomal peptide synthetases reveals a great potential for novel siderophores and lipopeptides synthesis. Esmaeel Q; Pupin M; Kieu NP; Chataigné G; Béchet M; Deravel J; Krier F; Höfte M; Jacques P; Leclère V Microbiologyopen; 2016 Jun; 5(3):512-26. PubMed ID: 27060604 [TBL] [Abstract][Full Text] [Related]
7. Genome-wide expression analysis of iron regulation in Burkholderia pseudomallei and Burkholderia mallei using DNA microarrays. Tuanyok A; Kim HS; Nierman WC; Yu Y; Dunbar J; Moore RA; Baker P; Tom M; Ling JM; Woods DE FEMS Microbiol Lett; 2005 Nov; 252(2):327-35. PubMed ID: 16242861 [TBL] [Abstract][Full Text] [Related]
8. Analysis of the pmsCEAB gene cluster involved in biosynthesis of salicylic acid and the siderophore pseudomonine in the biocontrol strain Pseudomonas fluorescens WCS374. Mercado-Blanco J; van der Drift KM; Olsson PE; Thomas-Oates JE; van Loon LC; Bakker PA J Bacteriol; 2001 Mar; 183(6):1909-20. PubMed ID: 11222588 [TBL] [Abstract][Full Text] [Related]
9. Regulation of a quorum sensing system by stationary phase sigma factor RpoS and their co-regulation of target genes in Burkholderia pseudomallei. Wongtrakoongate P; Tumapa S; Tungpradabkul S Microbiol Immunol; 2012 May; 56(5):281-94. PubMed ID: 22385268 [TBL] [Abstract][Full Text] [Related]
10. Growth, motility and resistance to oxidative stress of the melioidosis pathogen Burkholderia pseudomallei are enhanced by epinephrine. Intarak N; Muangsombut V; Vattanaviboon P; Stevens MP; Korbsrisate S Pathog Dis; 2014 Oct; 72(1):24-31. PubMed ID: 24753312 [TBL] [Abstract][Full Text] [Related]
11. Siderophore production by Pseudomonas pseudomallei. Yang HM; Chaowagul W; Sokol PA Infect Immun; 1991 Mar; 59(3):776-80. PubMed ID: 1825486 [TBL] [Abstract][Full Text] [Related]
13. Development of novel animal infection models for the study of acute and chronic Burkholderia pseudomallei pulmonary infections. van Schaik E; Tom M; DeVinney R; Woods DE Microbes Infect; 2008 Oct; 10(12-13):1291-9. PubMed ID: 18707015 [TBL] [Abstract][Full Text] [Related]
14. Ability of Pseudomonas pseudomallei malleobactin to acquire transferrin-bound, lactoferrin-bound, and cell-derived iron. Yang H; Kooi CD; Sokol PA Infect Immun; 1993 Feb; 61(2):656-62. PubMed ID: 7678587 [TBL] [Abstract][Full Text] [Related]
15. Global map of growth-regulated gene expression in Burkholderia pseudomallei, the causative agent of melioidosis. Rodrigues F; Sarkar-Tyson M; Harding SV; Sim SH; Chua HH; Lin CH; Han X; Karuturi RK; Sung K; Yu K; Chen W; Atkins TP; Titball RW; Tan P J Bacteriol; 2006 Dec; 188(23):8178-88. PubMed ID: 16997946 [TBL] [Abstract][Full Text] [Related]
16. Plasticity of the malleobactin pathway and its impact on siderophore action in human pathogenic bacteria. Franke J; Ishida K; Hertweck C Chemistry; 2015 May; 21(22):8010-4. PubMed ID: 25873483 [TBL] [Abstract][Full Text] [Related]
17. Characterization of New Virulence Factors Involved in the Intracellular Growth and Survival of Burkholderia pseudomallei. Moule MG; Spink N; Willcocks S; Lim J; Guerra-Assunção JA; Cia F; Champion OL; Senior NJ; Atkins HS; Clark T; Bancroft GJ; Cuccui J; Wren BW Infect Immun; 2015 Dec; 84(3):701-10. PubMed ID: 26712202 [TBL] [Abstract][Full Text] [Related]
18. Transcription level analysis of intracellular Burkholderia pseudomallei illustrates the role of BPSL1502 during bacterial interaction with human lung epithelial cells. Techawiwattanaboon T; Bartpho T; Sermswan RW; Chareonsudjai S J Microbiol; 2015 Feb; 53(2):134-40. PubMed ID: 25626369 [TBL] [Abstract][Full Text] [Related]
19. Type III secretion system cluster 3 is required for maximal virulence of Burkholderia pseudomallei in a hamster infection model. Warawa J; Woods DE FEMS Microbiol Lett; 2005 Jan; 242(1):101-8. PubMed ID: 15621426 [TBL] [Abstract][Full Text] [Related]