BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 16452439)

  • 21. Functional reconstitution, gene isolation and topology modelling of porins from Burkholderia pseudomallei and Burkholderia thailandensis.
    Siritapetawee J; Prinz H; Samosornsuk W; Ashley RH; Suginta W
    Biochem J; 2004 Feb; 377(Pt 3):579-87. PubMed ID: 14567756
    [TBL] [Abstract][Full Text] [Related]  

  • 22. RpoS and oxidative stress conditions regulate succinyl-CoA: 3-ketoacid-coenzyme A transferase (SCOT) expression in Burkholderia pseudomallei.
    Chutoam P; Charoensawan V; Wongtrakoongate P; Kum-Arth A; Buphamalai P; Tungpradabkul S
    Microbiol Immunol; 2013 Sep; 57(9):605-15. PubMed ID: 23808410
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nonribosomal peptide synthase is responsible for the biosynthesis of siderophore in Vibrio vulnificus MO6-24/O.
    Kim IH; Shim JI; Lee KE; Hwang W; Kim IJ; Choi SH; Kim KS
    J Microbiol Biotechnol; 2008 Jan; 18(1):35-42. PubMed ID: 18239413
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Extracytoplasmic Function Sigma Factors Governing Production of the Primary Siderophores in Pathogenic
    Grove A
    Front Microbiol; 2022; 13():851011. PubMed ID: 35283809
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Production and purification of Burkholderia pseudomallei BipD protein.
    Visutthi M; Jitsurong S; Chotigeat W
    Southeast Asian J Trop Med Public Health; 2008 Jan; 39(1):109-14. PubMed ID: 18567449
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Transcriptional profiles of Burkholderia pseudomallei reveal the direct and indirect roles of Sigma E under oxidative stress conditions.
    Jitprasutwit S; Ong C; Juntawieng N; Ooi WF; Hemsley CM; Vattanaviboon P; Titball RW; Tan P; Korbsrisate S
    BMC Genomics; 2014 Sep; 15(1):787. PubMed ID: 25214426
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Transcriptome analysis of Burkholderia pseudomallei T6SS identifies Hcp1 as a potential serodiagnostic marker.
    Chieng S; Mohamed R; Nathan S
    Microb Pathog; 2015 Feb; 79():47-56. PubMed ID: 25616255
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The mviN homolog in Burkholderia pseudomallei is essential for viability and virulence.
    Ling JM; Moore RA; Surette MG; Woods DE
    Can J Microbiol; 2006 Sep; 52(9):831-42. PubMed ID: 17110975
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Burkholderia pseudomallei RpoS regulates OxyR and the katG-dpsA operon under conditions of oxidative stress.
    Jangiam W; Loprasert S; Smith DR; Tungpradabkul S
    Microbiol Immunol; 2010 Jul; 54(7):389-97. PubMed ID: 20618685
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A novel siderophore-independent strategy of iron uptake in the genus Burkholderia.
    Mathew A; Eberl L; Carlier AL
    Mol Microbiol; 2014 Feb; 91(4):805-20. PubMed ID: 24354890
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The rpoE operon regulates heat stress response in Burkholderia pseudomallei.
    Vanaporn M; Vattanaviboon P; Thongboonkerd V; Korbsrisate S
    FEMS Microbiol Lett; 2008 Jul; 284(2):191-6. PubMed ID: 18507684
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Inactivation of Burkholderia pseudomallei bsaQ results in decreased invasion efficiency and delayed escape of bacteria from endocytic vesicles.
    Muangsombut V; Suparak S; Pumirat P; Damnin S; Vattanaviboon P; Thongboonkerd V; Korbsrisate S
    Arch Microbiol; 2008 Dec; 190(6):623-31. PubMed ID: 18654761
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A proteome reference map of the causative agent of melioidosis Burkholderia pseudomallei.
    Wongtrakoongate P; Roytrakul S; Yasothornsrikul S; Tungpradabkul S
    J Biomed Biotechnol; 2011; 2011():530926. PubMed ID: 21960737
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Erwinia chrysanthemi requires a second iron transport route dependent of the siderophore achromobactin for extracellular growth and plant infection.
    Franza T; Mahé B; Expert D
    Mol Microbiol; 2005 Jan; 55(1):261-75. PubMed ID: 15612933
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A MarR family transcriptional regulator and subinhibitory antibiotics regulate type VI secretion gene clusters in Burkholderia pseudomallei.
    Losada L; Shea AA; DeShazer D
    Microbiology (Reading); 2018 Sep; 164(9):1196-1211. PubMed ID: 30052173
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molecular insights into Burkholderia pseudomallei and Burkholderia mallei pathogenesis.
    Galyov EE; Brett PJ; DeShazer D
    Annu Rev Microbiol; 2010; 64():495-517. PubMed ID: 20528691
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Molecular genetics of fungal siderophore biosynthesis and uptake: the role of siderophores in iron uptake and storage.
    Haas H
    Appl Microbiol Biotechnol; 2003 Sep; 62(4):316-30. PubMed ID: 12759789
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Burkholderia pseudomallei RpoE (AlgU) operon is involved in environmental stress tolerance and biofilm formation.
    Korbsrisate S; Vanaporn M; Kerdsuk P; Kespichayawattana W; Vattanaviboon P; Kiatpapan P; Lertmemongkolchai G
    FEMS Microbiol Lett; 2005 Nov; 252(2):243-9. PubMed ID: 16185818
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Burkholderia pseudomallei transcriptional adaptation in macrophages.
    Chieng S; Carreto L; Nathan S
    BMC Genomics; 2012 Jul; 13():328. PubMed ID: 22823543
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Temperature-regulated microcolony formation by Burkholderia pseudomallei requires pilA and enhances association with cultured human cells.
    Boddey JA; Flegg CP; Day CJ; Beacham IR; Peak IR
    Infect Immun; 2006 Sep; 74(9):5374-81. PubMed ID: 16926432
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.