BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

315 related articles for article (PubMed ID: 16452624)

  • 1. Genetic selection for protein solubility enabled by the folding quality control feature of the twin-arginine translocation pathway.
    Fisher AC; Kim W; DeLisa MP
    Protein Sci; 2006 Mar; 15(3):449-58. PubMed ID: 16452624
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic selection of solubility-enhanced proteins using the twin-arginine translocation system.
    Fisher AC; Rocco MA; DeLisa MP
    Methods Mol Biol; 2011; 705():53-67. PubMed ID: 21125380
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Discovery of amyloid-beta aggregation inhibitors using an engineered assay for intracellular protein folding and solubility.
    Lee LL; Ha H; Chang YT; DeLisa MP
    Protein Sci; 2009 Feb; 18(2):277-86. PubMed ID: 19177561
    [TBL] [Abstract][Full Text] [Related]  

  • 4. TAT hitchhiker selection expanded to folding helpers, multimeric interactions and combinations with protein fragment complementation.
    Speck J; Räuber C; Kükenshöner T; Niemöller C; Mueller KJ; Schleberger P; Dondapati P; Hecky J; Arndt KM; Müller KM
    Protein Eng Des Sel; 2013 Mar; 26(3):225-42. PubMed ID: 23223941
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mining mammalian genomes for folding competent proteins using Tat-dependent genetic selection in Escherichia coli.
    Lim HK; Mansell TJ; Linderman SW; Fisher AC; Dyson MR; DeLisa MP
    Protein Sci; 2009 Dec; 18(12):2537-49. PubMed ID: 19830686
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient isolation of soluble intracellular single-chain antibodies using the twin-arginine translocation machinery.
    Fisher AC; DeLisa MP
    J Mol Biol; 2009 Jan; 385(1):299-311. PubMed ID: 18992254
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Probing the quality control mechanism of the
    Sutherland GA; Grayson KJ; Adams NBP; Mermans DMJ; Jones AS; Robertson AJ; Auman DB; Brindley AA; Sterpone F; Tuffery P; Derreumaux P; Dutton PL; Robinson C; Hitchcock A; Hunter CN
    J Biol Chem; 2018 May; 293(18):6672-6681. PubMed ID: 29559557
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preventing protein aggregation by its hyper-acidic fusion cognates in Escherichia coli.
    Zou Z; Fan Y; Zhang C
    Protein Expr Purif; 2011 Nov; 80(1):138-44. PubMed ID: 21704170
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient phage display of intracellularly folded proteins mediated by the TAT pathway.
    Speck J; Arndt KM; Müller KM
    Protein Eng Des Sel; 2011 Jun; 24(6):473-84. PubMed ID: 21289038
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A rapid protein folding assay for the bacterial periplasm.
    Mansell TJ; Linderman SW; Fisher AC; DeLisa MP
    Protein Sci; 2010 May; 19(5):1079-90. PubMed ID: 20440843
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploration of twin-arginine translocation for expression and purification of correctly folded proteins in Escherichia coli.
    Fisher AC; Kim JY; Perez-Rodriguez R; Tullman-Ercek D; Fish WR; Henderson LA; DeLisa MP
    Microb Biotechnol; 2008 Sep; 1(5):403-15. PubMed ID: 21261860
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Folding quality control in the export of proteins by the bacterial twin-arginine translocation pathway.
    DeLisa MP; Tullman D; Georgiou G
    Proc Natl Acad Sci U S A; 2003 May; 100(10):6115-20. PubMed ID: 12721369
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel GFP expression using a short N-terminal polypeptide through the defined twin-arginine translocation (Tat) pathway.
    Lee SJ; Han YH; Kim YO; Nam BH; Kong HJ
    Mol Cells; 2011 Oct; 32(4):349-58. PubMed ID: 22038594
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Twin-arginine translocase mutations that suppress folding quality control and permit export of misfolded substrate proteins.
    Rocco MA; Waraho-Zhmayev D; DeLisa MP
    Proc Natl Acad Sci U S A; 2012 Aug; 109(33):13392-7. PubMed ID: 22847444
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generic hydrophobic residues are sufficient to promote aggregation of the Alzheimer's Abeta42 peptide.
    Kim W; Hecht MH
    Proc Natl Acad Sci U S A; 2006 Oct; 103(43):15824-9. PubMed ID: 17038501
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Competition between Sec- and TAT-dependent protein translocation in Escherichia coli.
    Cristóbal S; de Gier JW; Nielsen H; von Heijne G
    EMBO J; 1999 Jun; 18(11):2982-90. PubMed ID: 10357811
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Twin arginine translocase pathway and fast-folding lipoprotein biosynthesis in E. coli: interesting implications and applications.
    Shruthi H; Anand P; Murugan V; Sankaran K
    Mol Biosyst; 2010 Jun; 6(6):999-1007. PubMed ID: 20485744
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conversion of Abeta42 into a folded soluble native-like protein using a semi-random library of amphipathic helices.
    Arslan PE; Mulligan VK; Ho S; Chakrabartty A
    J Mol Biol; 2010 Mar; 396(5):1284-94. PubMed ID: 20026077
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative proteome analysis in an Escherichia coli CyDisCo strain identifies stress responses related to protein production, oxidative stress and accumulation of misfolded protein.
    Guerrero Montero I; Dolata KM; Schlüter R; Malherbe G; Sievers S; Zühlke D; Sura T; Dave E; Riedel K; Robinson C
    Microb Cell Fact; 2019 Jan; 18(1):19. PubMed ID: 30696436
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A plant cell-based system that predicts aβ42 misfolding: potential as a drug discovery tool for Alzheimer's disease.
    Zhao T; Zeng Y; Kermode AR
    Mol Genet Metab; 2012 Nov; 107(3):571-9. PubMed ID: 22944366
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.