These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

316 related articles for article (PubMed ID: 16452624)

  • 41. The twin-arginine translocation system and its capability for protein secretion in biotechnological protein production.
    Brüser T
    Appl Microbiol Biotechnol; 2007 Aug; 76(1):35-45. PubMed ID: 17476499
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Transport of cytochrome c derivatives by the bacterial Tat protein translocation system.
    Sanders C; Wethkamp N; Lill H
    Mol Microbiol; 2001 Jul; 41(1):241-6. PubMed ID: 11454216
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Solution structure of the TatB component of the twin-arginine translocation system.
    Zhang Y; Wang L; Hu Y; Jin C
    Biochim Biophys Acta; 2014 Jul; 1838(7):1881-8. PubMed ID: 24699374
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A genetic screen for suppressors of Escherichia coli Tat signal peptide mutations establishes a critical role for the second arginine within the twin-arginine motif.
    Buchanan G; Sargent F; Berks BC; Palmer T
    Arch Microbiol; 2001 Dec; 177(1):107-12. PubMed ID: 11797051
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Repurposing a bacterial quality control mechanism to enhance enzyme production in living cells.
    Boock JT; King BC; Taw MN; Conrado RJ; Siu KH; Stark JC; Walker LP; Gibson DM; DeLisa MP
    J Mol Biol; 2015 Mar; 427(6 Pt B):1451-1463. PubMed ID: 25591491
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Secretion of active xylanase C from Streptomyces lividans is exclusively mediated by the Tat protein export system.
    Faury D; Saidane S; Li H; Morosoli R
    Biochim Biophys Acta; 2004 Jun; 1699(1-2):155-62. PubMed ID: 15158723
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The Tat system of Gram-positive bacteria.
    Goosens VJ; Monteferrante CG; van Dijl JM
    Biochim Biophys Acta; 2014 Aug; 1843(8):1698-706. PubMed ID: 24140208
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Application of an E. coli signal sequence as a versatile inclusion body tag.
    Jong WS; Vikström D; Houben D; van den Berg van Saparoea HB; de Gier JW; Luirink J
    Microb Cell Fact; 2017 Mar; 16(1):50. PubMed ID: 28320377
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Tat transport of linker-containing proteins in Escherichia coli.
    Lindenstrauss U; Brüser T
    FEMS Microbiol Lett; 2009 Jun; 295(1):135-40. PubMed ID: 19473260
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Selection of TNF-alpha binding affibody molecules using a beta-lactamase protein fragment complementation assay.
    Löfdahl PA; Nord O; Janzon L; Nygren PA
    N Biotechnol; 2009 Nov; 26(5):251-9. PubMed ID: 19576305
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Secretory and extracellular production of recombinant proteins using Escherichia coli.
    Choi JH; Lee SY
    Appl Microbiol Biotechnol; 2004 Jun; 64(5):625-35. PubMed ID: 14966662
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [Assessment of the Escherichia coli Tat protein translocation system with fluorescent proteins].
    Zhang M; Pan RR; Yu ZL; Wu LF
    Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai); 2003 Aug; 35(8):702-6. PubMed ID: 12897964
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Sec- and Tat-dependent translocation of beta-lactamases across the Escherichia coli inner membrane.
    Pradel N; Delmas J; Wu LF; Santini CL; Bonnet R
    Antimicrob Agents Chemother; 2009 Jan; 53(1):242-8. PubMed ID: 18981261
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A novel Escherichia coli solubility enhancer protein for fusion expression of aggregation-prone heterologous proteins.
    Song JA; Lee DS; Park JS; Han KY; Lee J
    Enzyme Microb Technol; 2011 Jul; 49(2):124-30. PubMed ID: 22112398
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A microbial sensor for discovering structural probes of protein misfolding and aggregation.
    Waraho-Zhmayev D; Gkogka L; Yu TY; DeLisa MP
    Prion; 2013; 7(2):151-6. PubMed ID: 23357829
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Coexpression of TorD enhances the transport of GFP via the TAT pathway.
    Li SY; Chang BY; Lin SC
    J Biotechnol; 2006 Apr; 122(4):412-21. PubMed ID: 16253369
    [TBL] [Abstract][Full Text] [Related]  

  • 57. An alternative model of the twin arginine translocation system.
    Brüser T; Sanders C
    Microbiol Res; 2003; 158(1):7-17. PubMed ID: 12608575
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Twin-arginine-dependent translocation of SufI in the absence of cytosolic helper proteins.
    Holzapfel E; Moser M; Schiltz E; Ueda T; Betton JM; Müller M
    Biochemistry; 2009 Jun; 48(23):5096-105. PubMed ID: 19432418
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Protein transport by the bacterial Tat pathway.
    Patel R; Smith SM; Robinson C
    Biochim Biophys Acta; 2014 Aug; 1843(8):1620-8. PubMed ID: 24583120
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Yersinia enterocolitica and Photorhabdus asymbiotica β-lactamases BlaA are exported by the twin-arginine translocation pathway.
    Schriefer EM; Hoffmann-Thoms S; Schmid FX; Schmid A; Heesemann J
    Int J Med Microbiol; 2013 Jan; 303(1):16-24. PubMed ID: 23276548
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.