These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 16452625)

  • 21. The transmembrane domain of caveolin-1 exhibits a helix-break-helix structure.
    Lee J; Glover KJ
    Biochim Biophys Acta; 2012 May; 1818(5):1158-64. PubMed ID: 22240009
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Molecular Characterization of Caveolin-induced Membrane Curvature.
    Ariotti N; Rae J; Leneva N; Ferguson C; Loo D; Okano S; Hill MM; Walser P; Collins BM; Parton RG
    J Biol Chem; 2015 Oct; 290(41):24875-90. PubMed ID: 26304117
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Allosteric network of cAMP-dependent protein kinase revealed by mutation of Tyr204 in the P+1 loop.
    Yang J; Garrod SM; Deal MS; Anand GS; Woods VL; Taylor S
    J Mol Biol; 2005 Feb; 346(1):191-201. PubMed ID: 15663937
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dissecting interdomain communication within cAPK regulatory subunit type IIbeta using enhanced amide hydrogen/deuterium exchange mass spectrometry (DXMS).
    Zawadzki KM; Hamuro Y; Kim JS; Garrod S; Stranz DD; Taylor SS; Woods VL
    Protein Sci; 2003 Sep; 12(9):1980-90. PubMed ID: 12930997
    [TBL] [Abstract][Full Text] [Related]  

  • 25. PKA-I holoenzyme structure reveals a mechanism for cAMP-dependent activation.
    Kim C; Cheng CY; Saldanha SA; Taylor SS
    Cell; 2007 Sep; 130(6):1032-43. PubMed ID: 17889648
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Isoform specific differences in binding of a dual-specificity A-kinase anchoring protein to type I and type II regulatory subunits of PKA.
    Burns LL; Canaves JM; Pennypacker JK; Blumenthal DK; Taylor SS
    Biochemistry; 2003 May; 42(19):5754-63. PubMed ID: 12741833
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Secondary Structure Analysis of a Functional Construct of Caveolin-1 Reveals a Long C-Terminal Helix.
    Plucinsky SM; Glover KJ
    Biophys J; 2015 Oct; 109(8):1686-8. PubMed ID: 26488659
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dissecting the streptavidin-biotin interaction by phage-displayed shotgun scanning.
    Avrantinis SK; Stafford RL; Tian X; Weiss GA
    Chembiochem; 2002 Dec; 3(12):1229-34. PubMed ID: 12465031
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The Caveolin-1 Scaffolding Domain Peptide Reverses Aging-Associated Deleterious Changes in Multiple Organs.
    Kuppuswamy D; Chinnakkannu P; Reese C; Hoffman S
    J Pharmacol Exp Ther; 2021 Jul; 378(1):1-9. PubMed ID: 33879542
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structure-based reassessment of the caveolin signaling model: do caveolae regulate signaling through caveolin-protein interactions?
    Collins BM; Davis MJ; Hancock JF; Parton RG
    Dev Cell; 2012 Jul; 23(1):11-20. PubMed ID: 22814599
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Catalytic independent functions of a protein kinase as revealed by a kinase-dead mutant: study of the Lys72His mutant of cAMP-dependent kinase.
    Iyer GH; Garrod S; Woods VL; Taylor SS
    J Mol Biol; 2005 Sep; 351(5):1110-22. PubMed ID: 16054648
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Synthetic cell-permeable caveolin-1 scaffolding domain peptide activates phagocytosis of Escherichia coli by regulating Rab5 activity.
    Hagiwara M; Matsushita K
    Z Naturforsch C J Biosci; 2020 Sep; 75(9-10):333-337. PubMed ID: 32452824
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Elucidation of the epsilon-theta subunit interface of Escherichia coli DNA polymerase III by NMR spectroscopy.
    DeRose EF; Darden T; Harvey S; Gabel S; Perrino FW; Schaaper RM; London RE
    Biochemistry; 2003 Apr; 42(13):3635-44. PubMed ID: 12667053
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Solubilization of a membrane protein by combinatorial supercharging.
    Hajduczki A; Majumdar S; Fricke M; Brown IA; Weiss GA
    ACS Chem Biol; 2011 Apr; 6(4):301-7. PubMed ID: 21192634
    [TBL] [Abstract][Full Text] [Related]  

  • 35. E230Q mutation of the catalytic subunit of cAMP-dependent protein kinase affects local structure and the binding of peptide inhibitor.
    Ung MU; Lu B; McCammon JA
    Biopolymers; 2006 Apr; 81(6):428-39. PubMed ID: 16365849
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molecular basis of AKAP specificity for PKA regulatory subunits.
    Gold MG; Lygren B; Dokurno P; Hoshi N; McConnachie G; Taskén K; Carlson CR; Scott JD; Barford D
    Mol Cell; 2006 Nov; 24(3):383-95. PubMed ID: 17081989
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Crystal structure of a transition state mimic of the catalytic subunit of cAMP-dependent protein kinase.
    Madhusudan ; Akamine P; Xuong NH; Taylor SS
    Nat Struct Biol; 2002 Apr; 9(4):273-7. PubMed ID: 11896404
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Probing cAMP-dependent protein kinase holoenzyme complexes I alpha and II beta by FT-IR and chemical protein footprinting.
    Yu S; Mei FC; Lee JC; Cheng X
    Biochemistry; 2004 Feb; 43(7):1908-20. PubMed ID: 14967031
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mapping intersubunit interactions of the regulatory subunit (RIalpha) in the type I holoenzyme of protein kinase A by amide hydrogen/deuterium exchange mass spectrometry (DXMS).
    Hamuro Y; Anand GS; Kim JS; Juliano C; Stranz DD; Taylor SS; Woods VL
    J Mol Biol; 2004 Jul; 340(5):1185-96. PubMed ID: 15236976
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A simple electrostatic switch important in the activation of type I protein kinase A by cyclic AMP.
    Vigil D; Lin JH; Sotriffer CA; Pennypacker JK; McCammon JA; Taylor SS
    Protein Sci; 2006 Jan; 15(1):113-21. PubMed ID: 16322564
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.