These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 16452813)

  • 1. Prokaryote phylogeny without sequence alignment: from avoidance signature to composition distance.
    Hao B; Qi J
    Proc IEEE Comput Soc Bioinform Conf; 2003; 2():375-84. PubMed ID: 16452813
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prokaryote phylogeny without sequence alignment: from avoidance signature to composition distance.
    Hao B; Qi J
    J Bioinform Comput Biol; 2004 Mar; 2(1):1-19. PubMed ID: 15272430
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prokaryote phylogeny meets taxonomy: an exhaustive comparison of composition vector trees with systematic bacteriology.
    Gao L; Qi J; Sun J; Hao B
    Sci China C Life Sci; 2007 Oct; 50(5):587-99. PubMed ID: 17879055
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reconstructing recombination network from sequence data: the small parsimony problem.
    Nguyen CT; Nguyen NB; Sung WK; Zhang L
    IEEE/ACM Trans Comput Biol Bioinform; 2007; 4(3):394-402. PubMed ID: 17666759
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computing recombination networks from binary sequences.
    Huson DH; Kloepper TH
    Bioinformatics; 2005 Sep; 21 Suppl 2():ii159-65. PubMed ID: 16204096
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detecting key structural features within highly recombined genes.
    Wertz JE; McGregor KF; Bessen DE
    PLoS Comput Biol; 2007 Jan; 3(1):e14. PubMed ID: 17257051
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sliding MinPD: building evolutionary networks of serial samples via an automated recombination detection approach.
    Buendia P; Narasimhan G
    Bioinformatics; 2007 Nov; 23(22):2993-3000. PubMed ID: 17717035
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Introduction to inferring evolutionary relationships.
    Page RD
    Curr Protoc Bioinformatics; 2003 Feb; Chapter 6():Unit 6.1. PubMed ID: 18428703
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Whole-genome prokaryotic phylogeny.
    Henz SR; Huson DH; Auch AF; Nieselt-Struwe K; Schuster SC
    Bioinformatics; 2005 May; 21(10):2329-35. PubMed ID: 15166018
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Discriminating between rate heterogeneity and interspecific recombination in DNA sequence alignments with phylogenetic factorial hidden Markov models.
    Husmeier D
    Bioinformatics; 2005 Sep; 21 Suppl 2():ii166-72. PubMed ID: 16204097
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient inference on known phylogenetic trees using Poisson regression.
    Rosset S
    Bioinformatics; 2007 Jan; 23(2):e142-7. PubMed ID: 17237083
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient reconstruction of phylogenetic networks with constrained recombination.
    Gusfield D; Eddhu S; Langley C
    Proc IEEE Comput Soc Bioinform Conf; 2003; 2():363-74. PubMed ID: 16452812
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Robust inference of positive selection from recombining coding sequences.
    Scheffler K; Martin DP; Seoighe C
    Bioinformatics; 2006 Oct; 22(20):2493-9. PubMed ID: 16895925
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phylocomposer and phylodirector: analysis and visualization of transducer indel models.
    Holmes I
    Bioinformatics; 2007 Dec; 23(23):3263-4. PubMed ID: 17804439
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reconstructing phylogenetic trees of prokaryote genomes by randomly sampling oligopeptides.
    Maruyama O; Matsuda A; Kuhara S
    Int J Bioinform Res Appl; 2005; 1(4):429-46. PubMed ID: 18048147
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inferring evolutionary trees with PAUP*.
    Wilgenbusch JC; Swofford D
    Curr Protoc Bioinformatics; 2003 Feb; Chapter 6():Unit 6.4. PubMed ID: 18428704
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dual multiple change-point model leads to more accurate recombination detection.
    Minin VN; Dorman KS; Fang F; Suchard MA
    Bioinformatics; 2005 Jul; 21(13):3034-42. PubMed ID: 15914546
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DupTree: a program for large-scale phylogenetic analyses using gene tree parsimony.
    Wehe A; Bansal MS; Burleigh JG; Eulenstein O
    Bioinformatics; 2008 Jul; 24(13):1540-1. PubMed ID: 18474508
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hetero: a program to simulate the evolution of DNA on a four-taxon tree.
    Jermiin LS; Ho SY; Ababneh F; Robinson J; Larkum AW
    Appl Bioinformatics; 2003; 2(3):159-63. PubMed ID: 15130802
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computing the joint distribution of tree shape and tree distance for gene tree inference and recombination detection.
    Chung Y; Perna NT; Ané C
    IEEE/ACM Trans Comput Biol Bioinform; 2013; 10(5):1263-74. PubMed ID: 24384712
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.