These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 16452975)

  • 21. Effect of interlayer on structure and performance of anode-supported SOFC single cells.
    Eom TW; Yang HK; Kim KH; Yoon HH; Kim JS; Park SJ
    Ultramicroscopy; 2008 Sep; 108(10):1283-7. PubMed ID: 18571861
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Rational Design of Superior, Coking-Resistant, Nickel-Based Anodes through Tailoring Interfacial Reactions for Solid Oxide Fuel Cells Operated on Methane Fuel.
    Qu J; Wang W; Chen Y; Li H; Zhong Y; Yang G; Zhou W; Shao Z
    ChemSusChem; 2018 Sep; 11(18):3112-3119. PubMed ID: 30039570
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Three-dimensional analysis of solid oxide fuel cell Ni-YSZ anode interconnectivity.
    Wilson JR; Gameiro M; Mischaikow K; Kalies W; Voorhees PW; Barnett SA
    Microsc Microanal; 2009 Feb; 15(1):71-7. PubMed ID: 19144260
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Stability Study of Ni/Yttria-Stabilized Zirconia Anode for Direct Ammonia Solid Oxide Fuel Cells.
    Yang J; Molouk AF; Okanishi T; Muroyama H; Matsui T; Eguchi K
    ACS Appl Mater Interfaces; 2015 Dec; 7(51):28701-7. PubMed ID: 26642379
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Lowering the temperature of solid oxide fuel cells.
    Wachsman ED; Lee KT
    Science; 2011 Nov; 334(6058):935-9. PubMed ID: 22096189
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A high-performance cathode for the next generation of solid-oxide fuel cells.
    Shao Z; Haile SM
    Nature; 2004 Sep; 431(7005):170-3. PubMed ID: 15356627
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Performance of a Direct Methane Solid Oxide Fuel Cell Using Nickel-Ceria-Yttria Stabilized Zirconia as the Anode.
    Escudero MJ; Yeste MP; Cauqui MÁ; Muñoz MÁ
    Materials (Basel); 2020 Jan; 13(3):. PubMed ID: 32012909
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electrochemical enhancement of nitric oxide removal from simulated lean-burn engine exhaust via solid oxide fuel cells.
    Huang TJ; Wu CY; Lin YH
    Environ Sci Technol; 2011 Jul; 45(13):5683-8. PubMed ID: 21667969
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Simultaneous NOx and hydrocarbon emissions control for lean-burn engines using low-temperature solid oxide fuel cell at open circuit.
    Huang TJ; Hsu SH; Wu CY
    Environ Sci Technol; 2012 Feb; 46(4):2324-9. PubMed ID: 22289082
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Layered oxygen-deficient double perovskite as an efficient and stable anode for direct hydrocarbon solid oxide fuel cells.
    Sengodan S; Choi S; Jun A; Shin TH; Ju YW; Jeong HY; Shin J; Irvine JT; Kim G
    Nat Mater; 2015 Feb; 14(2):205-9. PubMed ID: 25532072
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Power output and columbic efficiencies from biofilms of Geobacter sulfurreducens comparable to mixed community microbial fuel cells.
    Nevin KP; Richter H; Covalla SF; Johnson JP; Woodard TL; Orloff AL; Jia H; Zhang M; Lovley DR
    Environ Microbiol; 2008 Oct; 10(10):2505-14. PubMed ID: 18564184
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Colossal ionic conductivity at interfaces of epitaxial ZrO2:Y2O3/SrTiO3 heterostructures.
    Garcia-Barriocanal J; Rivera-Calzada A; Varela M; Sefrioui Z; Iborra E; Leon C; Pennycook SJ; Santamaria J
    Science; 2008 Aug; 321(5889):676-80. PubMed ID: 18669859
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electrochemical oxidation of carbon-containing fuels and their dynamics in low-temperature fuel cells.
    Krewer U; Vidakovic-Koch T; Rihko-Struckmann L
    Chemphyschem; 2011 Oct; 12(14):2518-44. PubMed ID: 21755584
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A thermally self-sustained micro solid-oxide fuel-cell stack with high power density.
    Shao Z; Haile SM; Ahn J; Ronney PD; Zhan Z; Barnett SA
    Nature; 2005 Jun; 435(7043):795-8. PubMed ID: 15944699
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Microstructure tailoring of the nickel oxide-Yttria-stabilized zirconia hollow fibers toward high-performance microtubular solid oxide fuel cells.
    Liu T; Ren C; Fang S; Wang Y; Chen F
    ACS Appl Mater Interfaces; 2014 Nov; 6(21):18853-60. PubMed ID: 25313919
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Activation of H(2) oxidation at sulphur-exposed Ni surfaces under low temperature SOFC conditions.
    Deleebeeck L; Shishkin M; Addo P; Paulson S; Molero H; Ziegler T; Birss V
    Phys Chem Chem Phys; 2014 May; 16(20):9383-93. PubMed ID: 24718381
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Application of infiltrated LSCM-GDC oxide anode in direct carbon/coal fuel cells.
    Yue X; Arenillas A; Irvine JT
    Faraday Discuss; 2016 Aug; 190():269-89. PubMed ID: 27272986
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A High-Performing Sulfur-Tolerant and Redox-Stable Layered Perovskite Anode for Direct Hydrocarbon Solid Oxide Fuel Cells.
    Ding H; Tao Z; Liu S; Zhang J
    Sci Rep; 2015 Dec; 5():18129. PubMed ID: 26648509
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Importance of oxygen spillover for fuel oxidation on Ni/YSZ anodes in solid oxide fuel cells.
    Fu Z; Wang M; Zuo P; Yang Z; Wu R
    Phys Chem Chem Phys; 2014 May; 16(18):8536-40. PubMed ID: 24671516
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Double perovskites as anode materials for solid-oxide fuel cells.
    Huang YH; Dass RI; Xing ZL; Goodenough JB
    Science; 2006 Apr; 312(5771):254-7. PubMed ID: 16614219
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.