BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 16453337)

  • 21. Electrostatic calculations for assignment of infrared difference bands to carboxyl groups getting protonated during protein reactions.
    Hauser K
    Biopolymers; 2006 Jul; 82(4):430-4. PubMed ID: 16283666
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Selective detection of the structural changes upon photoreactions of several redox cofactors in photosystem II by means of light-induced ATR-FTIR difference spectroscopy.
    Okubo T; Noguchi T
    Spectrochim Acta A Mol Biomol Spectrosc; 2007 Apr; 66(4-5):863-8. PubMed ID: 16872888
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sulfide dehydrogenase activity of the monomeric flavoprotein SoxF of Paracoccus pantotrophus.
    Quentmeier A; Hellwig P; Bardischewsky F; Wichmann R; Friedrich CG
    Biochemistry; 2004 Nov; 43(46):14696-703. PubMed ID: 15544340
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ligand dynamics in heme proteins observed by Fourier transform infrared spectroscopy at cryogenic temperatures.
    Nienhaus K; Nienhaus GU
    Methods Enzymol; 2008; 437():347-78. PubMed ID: 18433637
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Electrochemically induced surface-enhanced infrared difference absorption (SEIDA) spectroscopy of a protein monolayer.
    Ataka K; Heberle J
    J Am Chem Soc; 2003 Apr; 125(17):4986-7. PubMed ID: 12708842
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Redox-triggered FTIR difference spectra of FAD in aqueous solution and bound to flavoproteins.
    Wille G; Ritter M; Friedemann R; Mäntele W; Hübner G
    Biochemistry; 2003 Dec; 42(50):14814-21. PubMed ID: 14674755
    [TBL] [Abstract][Full Text] [Related]  

  • 27. FTIR difference spectra of Wolinella succinogenes quinol:fumarate reductase support a key role of Glu C180 within the "E-pathway hypothesis" of coupled transmembrane electron and proton transfer.
    Haas AH; Sauer US; Gross R; Simon J; Mäntele W; Lancaster CR
    Biochemistry; 2005 Oct; 44(42):13949-61. PubMed ID: 16229484
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Insight into protein structure and protein-ligand recognition by Fourier transform infrared spectroscopy.
    Jung C
    J Mol Recognit; 2000; 13(6):325-51. PubMed ID: 11114067
    [TBL] [Abstract][Full Text] [Related]  

  • 29. ATR-FTIR spectroscopy studies of iron-sulfur protein and cytochrome c1 in the Rhodobacter capsulatus cytochrome bc1 complex.
    Iwaki M; Osyczka A; Moser CC; Dutton PL; Rich PR
    Biochemistry; 2004 Jul; 43(29):9477-86. PubMed ID: 15260490
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Redox-dependent conformational changes are common structural features of cytochrome c from various species.
    Calvert JF; Hill JL; Dong A
    Arch Biochem Biophys; 1997 Oct; 346(2):287-93. PubMed ID: 9343376
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structural perturbation of the carboxylate ligands to the manganese cluster upon Ca2+/Sr2+ exchange in the S-state cycle of photosynthetic oxygen evolution as studied by flash-induced FTIR difference spectroscopy.
    Suzuki H; Taguchi Y; Sugiura M; Boussac A; Noguchi T
    Biochemistry; 2006 Nov; 45(45):13454-64. PubMed ID: 17087499
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Redox infrared markers of the heme and axial ligands in microperoxidase: Bases for the analysis of c-type cytochromes.
    Marboutin L; Boussac A; Berthomieu C
    J Biol Inorg Chem; 2006 Oct; 11(7):811-23. PubMed ID: 16783544
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Use of infrared spectroscopy to monitor protein structure and stability.
    Manning MC
    Expert Rev Proteomics; 2005 Oct; 2(5):731-43. PubMed ID: 16209652
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Scaled quantum chemical calculations and FTIR, FT-Raman spectral analysis of 2-Methylpyrazine.
    Krishnakumar V; Prabavathi N
    Spectrochim Acta A Mol Biomol Spectrosc; 2009 May; 72(4):743-7. PubMed ID: 19121975
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cytochrome c552 mutants: structure and dynamics at the active site probed by multidimensional NMR and vibration echo spectroscopy.
    Massari AM; McClain BL; Finkelstein IJ; Lee AP; Reynolds HL; Bren KL; Fayer MD
    J Phys Chem B; 2006 Sep; 110(38):18803-10. PubMed ID: 16986870
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structural and chemical changes of the P(M) intermediate of paracoccus denitrificans cytochrome c oxidase revealed by IR spectroscopy with labeled tyrosines and histidine.
    Iwaki M; Puustinen A; Wikström M; Rich PR
    Biochemistry; 2006 Sep; 45(36):10873-85. PubMed ID: 16953573
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A study of the horseradish peroxidase catalytic site by FTIR spectroscopy.
    Ingledew WJ; Rich PR
    Biochem Soc Trans; 2005 Aug; 33(Pt 4):886-9. PubMed ID: 16042620
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Functional vibrational spectroscopy of a cytochrome c monolayer: SEIDAS probes the interaction with different surface-modified electrodes.
    Ataka K; Heberle J
    J Am Chem Soc; 2004 Aug; 126(30):9445-57. PubMed ID: 15281838
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Harmonic analysis of vibrations of morpholine-4-ylmethylthiourea: a DFT, midinfrared and Raman spectral study.
    Ramalingam M; Jaccob M; Swaminathan J; Venuvanalingam P; Sundaraganesan N
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Dec; 71(3):996-1002. PubMed ID: 18602861
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Monitoring water reactions during the S-state cycle of the photosynthetic water-oxidizing center: detection of the DOD bending vibrations by means of Fourier transform infrared spectroscopy.
    Suzuki H; Sugiura M; Noguchi T
    Biochemistry; 2008 Oct; 47(42):11024-30. PubMed ID: 18821774
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.