These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 1645345)

  • 41. [The functional coupling between Ca2+-ATPase and creatine phosphokinase in heart muscle sarcoplasmic reticulum].
    Levitskiĭ DO; Levchenko TS; Saks VA; Sharov VG; Smirnov VN
    Biokhimiia; 1977 Oct; 42(10):1766-73. PubMed ID: 144537
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Phosphocreatine and creatine kinase in energetic metabolism of the porcine carotid artery.
    Clark JF; Dillon PF
    J Vasc Res; 1995; 32(1):24-30. PubMed ID: 7873707
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Use of a monoclonal antibody to quantify (Na+,K+)-ATPase activity and sites in normal and regenerating rat liver.
    Schenk DB; Hubert JJ; Leffert HL
    J Biol Chem; 1984 Dec; 259(23):14941-51. PubMed ID: 6094583
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Modification of the conformational equilibria in the sodium and potassium dependent adenosinetriphosphatase with glutaraldehyde.
    Chipman DM; Lev A
    Biochemistry; 1983 Sep; 22(19):4450-9. PubMed ID: 6313040
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Mathematical model of compartmentalized energy transfer: its use for analysis and interpretation of 31P-NMR studies of isolated heart of creatine kinase deficient mice.
    Aliev MK; van Dorsten FA; Nederhoff MG; van Echteld CJ; Veksler V; Nicolay K; Saks VA
    Mol Cell Biochem; 1998 Jul; 184(1-2):209-29. PubMed ID: 9746323
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Na+,K(+)-ATPase pump currents in giant excised patches activated by an ATP concentration jump.
    Friedrich T; Bamberg E; Nagel G
    Biophys J; 1996 Nov; 71(5):2486-500. PubMed ID: 8913588
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Energetic demands of the Na+/K+ ATPase in mammalian astrocytes.
    Silver IA; Erecińska M
    Glia; 1997 Sep; 21(1):35-45. PubMed ID: 9298845
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Relationships between the neuronal sodium/potassium pump and energy metabolism. Effects of K+, Na+, and adenosine triphosphate in isolated brain synaptosomes.
    Erecińska M; Dagani F
    J Gen Physiol; 1990 Apr; 95(4):591-616. PubMed ID: 2159972
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Repetitive acidosis protects the ischemic heart: implications for mechanisms in preconditioned hearts.
    Lundmark JA; Trueblood N; Wang LF; Ramasamy R; Schaefer S
    J Mol Cell Cardiol; 1999 Apr; 31(4):907-17. PubMed ID: 10329217
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Temperature effects on sodium pump phosphoenzyme distribution in human red blood cells.
    Kaplan JH; Kenney LJ
    J Gen Physiol; 1985 Jan; 85(1):123-36. PubMed ID: 2578548
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Na(+)-K(+)-ATPase that redistributes to apical membrane during ATP depletion remains functional.
    Molitoris BA
    Am J Physiol; 1993 Nov; 265(5 Pt 2):F693-7. PubMed ID: 8238549
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Measurements of exchange in the reaction catalysed by creatine kinase using 14C and 15N isotope labels and the NMR technique of saturation transfer.
    Brindle KM; Radda GK
    Biochim Biophys Acta; 1985 Jun; 829(2):188-201. PubMed ID: 3995051
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Determination of creatine kinase kinetic parameters in rat brain by NMR magnetization transfer. Correlation with brain function.
    Sauter A; Rudin M
    J Biol Chem; 1993 Jun; 268(18):13166-71. PubMed ID: 8514755
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Involvement of the phosphoryl transfer network in gill bioenergetic imbalance of pacamã (Lophiosilurus alexandri) subjected to hypoxia: notable participation of creatine kinase.
    Baldissera MD; de Freitas Souza C; Boaventura TP; Nakayama CL; Baldisserotto B; Luz RK
    Fish Physiol Biochem; 2020 Feb; 46(1):405-416. PubMed ID: 31784931
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Combination of 31P-NMR magnetization transfer and radioisotope exchange methods for assessment of an enzyme reaction mechanism: rate-determining steps of the creatine kinase reaction.
    Kupriyanov VV; Balaban RS; Lyulina NV; Steinschneider AYa ; Saks VA
    Biochim Biophys Acta; 1990 Dec; 1020(3):290-304. PubMed ID: 2248962
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Exercise-induced changes in plasma composition increase erythrocyte Na+,K+-ATPase, but not Na+-K+-2Cl- cotransporter, activity to stimulate net and unidirectional K+ transport in humans.
    Lindinger MI; Grudzien SP
    J Physiol; 2003 Dec; 553(Pt 3):987-97. PubMed ID: 14528028
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Could cytoplasmic concentration gradients for sodium and ATP exist in intact renal cells?
    Ammann H; Noël J; Tejedor A; Boulanger Y; Gougoux A; Vinay P
    Can J Physiol Pharmacol; 1995 Apr; 73(4):421-35. PubMed ID: 7671185
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Regulation of ground squirrel Na+K+-ATPase activity by reversible phosphorylation during hibernation.
    MacDonald JA; Storey KB
    Biochem Biophys Res Commun; 1999 Jan; 254(2):424-9. PubMed ID: 9918854
    [TBL] [Abstract][Full Text] [Related]  

  • 59. 87Rb, 23Na and 31P nuclear magnetic resonance spectroscopy of the perfused rat kidney.
    Allis JL; Endre ZH; Radda GK
    Ren Physiol Biochem; 1989; 12(3):171-80. PubMed ID: 2560232
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effect of pH and inorganic phosphate on creatine kinase inactivation: an in vitro 31P NMR saturation-transfer study.
    Williams GD; Enders B; Smith MB
    Biochem Int; 1992 Feb; 26(1):35-42. PubMed ID: 1616495
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.