These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 16453869)

  • 21. The temperature-dependent change in methylation of the Antirrhinum transposon Tam3 is controlled by the activity of its transposase.
    Hashida SN; Uchiyama T; Martin C; Kishima Y; Sano Y; Mikami T
    Plant Cell; 2006 Jan; 18(1):104-18. PubMed ID: 16326924
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Molecular analysis of a transposon-induced deletion of the nivea locus in Antirrhinum majus.
    Lister C; Martin C
    Genetics; 1989 Oct; 123(2):417-25. PubMed ID: 2555255
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Alternative plant host defense against transposon activities occurs at the post-translational stage.
    Zhou H; Kishima Y
    Plant Signal Behav; 2017 May; 12(5):e1318238. PubMed ID: 28426280
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Activity of the transposon Tam3 in Antirrhinum and tobacco: possible role of DNA methylation.
    Martin C; Prescott A; Lister C; MacKay S
    EMBO J; 1989 Apr; 8(4):997-1004. PubMed ID: 2545443
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A pair of transposons coordinately suppresses gene expression, independent of pathways mediated by siRNA in Antirrhinum.
    Uchiyama T; Hiura S; Ebinuma I; Senda M; Mikami T; Martin C; Kishima Y
    New Phytol; 2013 Jan; 197(2):431-440. PubMed ID: 23190182
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tam3 in Antirrhinum majus is exceptional transposon in resistant to alteration by abortive gap repair: identification of nested transposons.
    Yamashita S; Mikami T; Kishima Y
    Mol Gen Genet; 1998 Sep; 259(5):468-74. PubMed ID: 9790577
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Trans-activation of an artificial dTam3 transposable element in transgenic tobacco plants.
    Haring MA; Teeuwen-de Vroomen MJ; Nijkamp HJ; Hille J
    Plant Mol Biol; 1991 Jan; 16(1):39-47. PubMed ID: 1653629
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Detainment of Tam3 Transposase at Plasma Membrane by Its BED-Zinc Finger Domain.
    Zhou H; Hirata M; Osawa R; Fujino K; Kishima Y
    Plant Physiol; 2017 Feb; 173(2):1492-1501. PubMed ID: 28008001
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The hobo transposable element of Drosophila can be cross-mobilized in houseflies and excises like the Ac element of maize.
    Atkinson PW; Warren WD; O'Brochta DA
    Proc Natl Acad Sci U S A; 1993 Oct; 90(20):9693-7. PubMed ID: 8415764
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structural analysis of Tam3, a transposable element from Antirrhinum majus, reveals homologies to the Ac element from maize.
    Hehl R; Nacken WK; Krause A; Saedler H; Sommer H
    Plant Mol Biol; 1991 Feb; 16(2):369-71. PubMed ID: 1654157
    [No Abstract]   [Full Text] [Related]  

  • 31. Molecular analysis of paramutant plants of Antirrhinum majus and the involvement of transposable elements.
    Krebbers E; Hehl R; Piotrowiak R; Lönnig WE; Sommer H; Saedler H
    Mol Gen Genet; 1987 Oct; 209(3):499-507. PubMed ID: 17193710
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The Hermes transposable element from the house fly, Musca domestica, is a short inverted repeat-type element of the hobo, Ac, and Tam3 (hAT) element family.
    Warren WD; Atkinson PW; O'Brochta DA
    Genet Res; 1994 Oct; 64(2):87-97. PubMed ID: 7813905
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Distribution of unlinked receptor sites for transposed Ac elements from the bz-m2(Ac) allele in maize.
    Dooner HK; Belachew A; Burgess D; Harding S; Ralston M; Ralston E
    Genetics; 1994 Jan; 136(1):261-79. PubMed ID: 8138163
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Interplasmid transposition of Drosophila hobo elements in non-drosophilid insects.
    O'Brochta DA; Warren WD; Saville KJ; Atkinson PW
    Mol Gen Genet; 1994 Jul; 244(1):9-14. PubMed ID: 8041366
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evidence for a common evolutionary origin of inverted repeat transposons in Drosophila and plants: hobo, Activator, and Tam3.
    Calvi BR; Hong TJ; Findley SD; Gelbart WM
    Cell; 1991 Aug; 66(3):465-71. PubMed ID: 1651170
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Pigmentation mutants produced by transposon mutagenesis in Antirrhinum majus.
    Luo D; Coen ES; Doyle S; Carpenter R
    Plant J; 1991 Jul; 1(1):59-69. PubMed ID: 1668965
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The frequency of transposition of the maize element Activator is not affected by an adjacent deletion.
    Dooner HK; English J; Ralston EJ
    Mol Gen Genet; 1988 Mar; 211(3):485-91. PubMed ID: 2835634
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Transposition of maize Ac/Ds transposable elements in the yeast Saccharomyces cerevisiae.
    Weil CF; Kunze R
    Nat Genet; 2000 Oct; 26(2):187-90. PubMed ID: 11017074
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Transposition of Ac from the P locus of maize into unreplicated chromosomal sites.
    Chen J; Greenblatt IM; Dellaporta SL
    Genetics; 1987 Sep; 117(1):109-16. PubMed ID: 2822530
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Molecular analysis of instability in flower pigmentation of Antirrhinum majus, following isolation of the pallida locus by transposon tagging.
    Martin C; Carpenter R; Sommer H; Saedler H; Coen ES
    EMBO J; 1985 Jul; 4(7):1625-30. PubMed ID: 16453618
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.